Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Arsenic speciation in marine organisms from Antarctic coastal environments

Marco Grotti A , Cristina Lagomarsino A , Walter Goessler B and Kevin A. Francesconi B
+ Author Affiliations
- Author Affiliations

A Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, I-16146 Genova, Italy.

B Karl-Franzens-University Graz, Institute of Chemistry-Analytical Chemistry, Universitaetsplatz 1, A-8010 Graz, Austria.

C Corresponding author. Email: grotti@chimica.unige.it

Environmental Chemistry 7(2) 207-214 https://doi.org/10.1071/EN09131
Submitted: 16 October 2009  Accepted: 19 January 2010   Published: 22 April 2010

Environmental context. In studies on trace element accumulation and transformation, it is difficult to distinguish the relative contribution of natural and anthropogenic sources. Antarctic ecosystems provide the opportunity to investigate the natural cycles of the elements, because the food webs are relatively simple and trace element contamination from anthropogenic sources is negligible. We report the arsenic species in various tissues from a range of Antarctic organisms, and compare the patterns of arsenicals with those from similar studies in temperate and tropical waters.

Abstract. Antarctic coastal environments offer the unique opportunity to study elemental cycling under pristine conditions. We report arsenic species in various tissues from a range of Antarctic organisms collected from coastal environments, and compare our results with those from similar studies in temperate and tropical waters. The arsenic species were determined in aqueous methanol extracts of tissues (including muscle, liver, gonads and spleen) by HPLC/ICPMS. The major compounds were arsenobetaine and oxo-arsenosugars, with their relative proportions depending on the position of the organism in the food chain and, for some species, on the type of tissue analysed. Several minor compounds, such as dimethylarsinate, trimethylarsine oxide, trimethylarsoniopropionate and arsenocholine were also found; the concentrations of these arsenic species were significantly lower in muscle compared with the other tissues. The transfer of the arsenic through the Antarctic marine food web and the speciation patterns found in the organisms were similar to those reported for comparable organisms from other marine ecosystems. Our study supports the view that the high levels of arsenic occurring in various forms in marine samples is a natural phenomenon, and is little influenced by anthropogenic activities.


References


[1]   Hempel G., Antarctic marine food webs, in Antarctic nutrient cycles and food webs (Eds W. R. Siegfried, P. R. Condy, R. M. Laws) 1985, pp. 266–270 (Springer: Berlin).

[2]   J. C. Sanchez-Hernandez , Trace element contamination in Antarctic ecosystems. Rev. Environ. Contam. Toxicol. 2000 , 166,  83.
        |  CAS | PubMed |  open url image1

[3]   A. J. Busalacchi , The role of the Southern Ocean in global processes: an earth system science approach. Antarct. Sci. 2004 , 16,  363.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   R. Bargagli , F. Monaci , J. C. Sanchez-Hernandez , D. Cateni , Biomagnification of mercury in an Antarctic marine coastal food web. Mar. Ecol. Prog. Ser. 1998 , 169,  65.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[5]   P. W. Boyd , A. J. Watson , C. S. Law , E. R. Abraham , T. Trull , R. Murdoch , D. C. E. Bakker , A. R. Bowie , et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 2000 , 407,  695.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[6]   W. R. Cullen , K. J. Reimer , Arsenic speciation in the environment. Chem. Rev. 1989 , 89,  713.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[7]   K. A. Francesconi , J. S. Edmonds , Arsenic and marine organisms. Adv. Inorg. Chem. 1996 , 44,  147.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   K. A. Francesconi , Current perspectives in arsenic environmental and biological research. Environ. Chem. 2005 , 2,  141.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[9]   M. Grotti , F. Soggia , C. Lagomarsino , S. Dalla Riva , W. Goessler , K. A. Francesconi , Natural variability and distribution of trace elements in marine organisms from Antarctic coastal environments. Antarct. Sci. 2008 , 20,  39.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[10]   W. Goessler , M. Pavkov , Accurate quantification and transformation of arsenic compounds during wet ashing with nitric acid and microwave assisted heating. Analyst 2003 , 128,  796.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[11]   K. A. Francesconi , J. S. Edmonds , R. V. Stick , B. W. Skelton , A. H. White , Arsenic-containing ribosides from the brown alga Sargassum lacerifolium: X-ray molecular structure of 2-amino-3-[5′-deoxy-5′-(dimethylarsinoyl)ribosyloxy]-propane-1-sulphonic acid. J. Chem. Soc., Perkin Trans. 1 1991 , I,  2707.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   Soggia F., Ianni C., Magi E., Frache R., Antarctic Environmental Specimen Bank, in Environmental Contamination in Antarctica: a challenge to analytical chemistry (Eds S. Caroli, P. Cescon, D. W. H. Walton) 2001, pp. 305–325 (Elsevier Science: Amsterdam).

[13]   M. Kovačevič , W. Goessler , Direct introduction of volatile carbon compounds into the spray chamber of an inductively coupled plasma mass spectrometer: sensitivity enhancement for selenium. Spectrochim. Acta, B At. Spectrosc. 2005 , 60,  1357.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[14]   A. Negri , K. Burns , S. Boyle , D. Brinkman , N. Webster , Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environ. Pollut. 2006 , 143,  456.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[15]   V. Nischwitz , S. A. Pergantis , First report on the detection and quantification of arsenobetaine in extracts of marine algae using HPLC-ES-MS/MS. Analyst 2005 , 130,  1348.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[16]   M. Grotti , F. Soggia , C. Lagomarsino , W. Goessler , K. A. Francesconi , Arsenobetaine is a significant arsenical constituent of the red Antarctic alga Phyllophora Antarctica. Environ. Chem. 2008 , 5,  171.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[17]   M. Chiantore , R. Cattaneo-Vietti , P. A. Berkman , M. Nigro , M. Vacchi , S. Schiaparelli , G. Albertelli , Antarctic scallop (Adamussium colbecki) spatial population variability along the Victoria Land Coast, Antarctica. Polar Biol. 2001 , 24,  139.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[18]   M. Vacchi , R. Cattaneo-Vietti , M. Chiantore , M. Dalù , Predator–prey relationship between the nototheniid fish Trematomus bernacchii and the Antarctic scallop Adamussium colbecki at Terra Nova Bay (Ross Sea). Antarct. Sci. 2000 , 12,  64.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[19]   I.-Y. Ahn , Ecology of the Antarctic bivalve Laternula elliptica (King and Broderip) in Collins Harbor, King George Island: benthic environment and an adaptive strategy. Mem. Nat. Inst. Polar Res. 1994 , 50,  1.
         open url image1

[20]   M. C. Lohan , P. J. Statham , L. Peck , Trace metals in the Antarctic soft-shelled clam Laternula elliptica: implications for metal pollution from Antarctic research stations. Polar Biol. 2001 , 24,  808.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[21]   Y. Shibata , M. Morita , Characterization of organic arsenic compounds in bivalves. Appl. Organomet. Chem. 1992 , 6,  343.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[22]   S. X. C. Le , W. R. Cullen , K. J. Reimer , Speciation of arsenic compounds in some marine organisms. Environ. Sci. Technol. 1994 , 28,  1598.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[23]   S. McSheehy , P. Pohl , R. Lobinski , J. Szpunar , Investigation of arsenic speciation in oyster test reference material by multidimensional HPLC-ICP-MS and electrospray tandem mass spectrometry (ES-MS-MS). Analyst 2001 , 126,  1055.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[24]   J. J. Corr , E. H. Larsen , Arsenic speciation by liquid chromatography coupled with ionspray tandem mass spectrometry. J. Anal. At. Spectrom. 1996 , 11,  1215.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[25]   Chiantore M., Cattaneo-Vietti R., Povero P., Alberelli G., The population structure and ecology of the Antarctic scallop Adamussium colbecki in Terra Nova Bay, in Ross Sea Ecology (Eds F. M. Faranda, L. Guglielmo, A. Ianora) 2000, pp. 563–573 (Springer: Berlin).

[26]   M. Vacchi , M. La Mesa , A. Castelli , Diet of two coastal nototheniid fish from Terra Nova Bay Ross Sea. Antarct. Sci. 1994 , 6,  61.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   M. La Mesa , M. Dalù , M. Vacchi , Trophic ecology of the emerald notothen Trematomus bernacchii (Pisces, Nototheniidae) from Terra Nova Bay, Ross Sea, Antarctica. Polar Biol. 2004 , 27,  721.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[28]   Francesconi K. A., Kuehnelt D., Arsenic compounds in the environment, in Environmental Chemistry of Arsenic (Ed. W. T. Frankenberger Jr) 2002, pp. 51–94 (Marcel Dekker Inc.:New York).

[29]   K. Hanaoka , H. Koga , S. Tagawa , The degradation of arsenobetaine to inorganic arsenic by the microorganisms occurring in the suspended substances. Comp. Biochem. Physiol. 1992 , 101B,  595.
        |  CAS |  open url image1

[30]   Francesconi K. A., Edmonds J. S., Determination of arsenic and arsenic species in marine environmental samples, in Arsenic in the Environment. Part I. Cycling and Characterization (Ed. J. O. Nriagu) 1994, pp. 221–261 (Wiley: New York).

[31]   J. S. Edmonds , K. A. Francesconi , Trimethylarsine oxide in estuary catfish (Cnidoglanis macrocephalus) and school whiting (Sillago bassensis) after oral administration of sodium arsenate; and as a natural component of estuary catfish. Sci. Total Environ. 1987 , 64,  317.
        | Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |  open url image1

[32]   K. Hanaoka , T. Motoya , S. Tagawa , T. Kaise , Conversion of arsenobetaine by intestinal bacteria of a mollusc Liolophura japonica chitons. Appl. Organomet. Chem. 1991 , 5,  427.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[33]   Francesconi K. A., Edmonds J. S., Arsenic in the sea, in Oceanography and Marine Biology: an Annual Review (Eds A. D Ansell, R. N. Gibson, M. Barnes) 1993, pp. 111–151 (UCL Press: London).

[34]   W. R. Cullen , H. Li , G. Hewitt , K. J. Reimer , N. Zalunardo , Identification of extracellular arsenical metabolites in the growth medium of the microorganisms Apiotrichum humicola and Scopulariopsis brevicaulis. Appl. Organomet. Chem. 1994 , 8,  303.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[35]   W. Goessler , W. Maher , K. J. Irgolic , D. Kuehnelt , C. Schlagenhaufen , T. Kaise , Conversion of arsenic compounds in a marine food chain. Fresenius J. Anal. Chem. 1997 , 359,  434.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[36]   S. Foster , W. Maher , E. Schmeisser , A. Taylor , F. Krikowa , S. Apte , Arsenic Species in a Rocky Intertidal Marine Food Chain in NSW, Australia, revisited. Environ. Chem. 2006 , 3,  304.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[37]   S. Khokiattiwong , N. Kornkanitnan , W. Goessler , S. Kokarnig , K. A. Francesconi , Arsenic compounds in tropical marine ecosystems: similarities between mangrove forest and coral reef. Environ. Chem. 2009 , 6,  226.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1

[38]   J. Kirby , W. Maher , A. Chariton , F. Krikowa , Arsenic concentrations and speciation in a temperate mangrove ecosystem, NSW, Australia. Appl. Organomet. Chem. 2002 , 16,  192.
        | Crossref | GoogleScholarGoogle Scholar | CAS |  open url image1