Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

Recent evolutionary history of New Zealand’s North and South Island Kokako (Callaeas cinerea) inferred from mitochondrial DNA sequences

S. A. Murphy A C , I. A. Flux B and M. C. Double A

A School of Botany and Zoology, Australian National University, ACT 0200, Australia.

B Research, Development and Improvement Division, Department of Conservation, Wellington, New Zealand.

C Corresponding author. Present address: Australian Wildlife Conservancy, PMB 925, Derby, WA 6728, Australia. Email: Steve@australianwildlife.org

Emu 106(1) 41-48 http://dx.doi.org/10.1071/MU05007
Submitted: 2 February 2005  Accepted: 22 December 2005   Published: 10 March 2006

Abstract

The Kokako (Callaeas cinerea) is an endangered, forest-dependent bird belonging to the endemic New Zealand family Callaeidae, the New Zealand wattlebirds. Two subspecies of Kokako are recognised: the now extinct orange-wattled South Island Kokako (SI Kokako) and the blue-wattled North Island Kokako (NI Kokako). The latter is the subject of intense conservation management and several populations have now been established on offshore island reserves. This study aimed to investigate the recent evolutionary history of Kokako through an assessment of the sequence variation and geographical distribution of mitochondrial haplotypes. We sequenced ~400 bases of the Domain III of the mitochondrial control region for 28 NI Kokako and two SI Kokako. Among NI Kokako, nucleotide diversity was low (0.006) but haplotype diversity was high (0.93). The average nucleotide diversity between NI Kokako and SI Kokako was 0.049 and a phylogenetic analysis revealed well supported reciprocal monophyly between NI Kokako and SI Kokako but no robust structure within NI Kokako. A nested clade analysis detected significant geographical structure in the distribution of the 13 NI Kokako haplotypes but could not identify an evolutionary scenario to explain the distribution. We discuss these findings in the context of the recent climatic and geological history of New Zealand.


References

Abbott C. L. Double M. C. 2003 Phylogeography of shy and white-capped albatrosses inferred from mitochondrial DNA sequences: implications for population history and taxonomy. Molecular Ecology 12 2747 2758 DOI

Avise J. C. (2000). ‘Phylogeography: The History and Formation of Species.’ (Harvard University Press: Cambridge, MA.)

Baker A. J., and Marshall H. D. (1997). Mitochondrial control region sequences as tools for understanding evolution. In ‘Avian Molecular Systematics’. (Ed. D. P. Mindell.) pp. 51–82. (Academic Press: San Diego, CA.)

Baker A. J. Daugherty C. H. Colbourne R. McLennan J. L. 1995 Flightless brown kiwis of New Zealand possess extremely subdivided population structure and cryptic species like small mammals. Proceedings of the National Academy of Sciences of the United States of America 92 8254 8258

Barker F. K. Cibois A. Schikler P. Feinstein J. Cracraft J. 2004 Phylogeny and diversification of the largest avian radiation. Proceedings of the National Academy of Sciences of the United States of America 101 11040 11045
DOI

Basse B. Flux I. Innes I. 2003 Recovery and maintenance of North Island kokako (Callaeas cinerea wilsoni) populations through pulsed pest control. Biological Conservation 109 259 270 DOI

Brown G. G. Gadaleta G. Pepe G. Saccone C. Sbisá E. 1986 Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. Journal of Molecular Biology 192 503 511 DOI

Buckingham R. 1987 Kokako presence on Stewart Island. Notornis 34 167

Buckley T. R. Simon C. Chambers G. K. 2001 Phylogeography of the New Zealand cicada Maoricicada campbelli based on mitochondrial DNA sequences: ancient clades associated with Cenozoic environmental change. Evolution 55 1395 1407


Clement M. Posada D. Crandall K. A. 2000 TCS: a computer program to estimate gene genealogies. Molecular Ecology 9 1657 1659
DOI

Crandall K. A. 1996 Multiple interspecies transmissions of human and simian t-Cell leukemia/lymphoma virus type I sequences. Molecular Biology and Evolution 13 115 131

Creer S. Malhotra A. Thorpe R. S. Chou W. H. 2001 Multiple causation of phylogeographical pattern as revealed by nested clade analysis of the bamboo viper (Trimeresurus stejnegeri) within Taiwan. Molecular Ecology 10 1967 1981
DOI

Falla R., Sibson R. B., and Turbott E. G. (1981). ‘Collins Guide to the Birds of New Zealand.’ (Collins: Auckland.)

Fleming C. A. 1962 History of the New Zealand land bird fauna. Notornis 9 270 274

Fleming C. A. (1979). ‘The Geological History of New Zealand and its Life.’ (Auckland University Press: Auckland.)

Freeland J. R. Boag P. T. 1999 Phylogenetics of Darwin’s finches: paraphyly in the tree-finches, and two divergent lineages in the Warbler Finch. Auk 116 577 588


Heather B. D., and Robertson H. A. (1996). ‘The Field Guide to the Birds of New Zealand.’ (Viking: Auckland.)

Hillis D. M. Bull J. J. 1993 An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42 182 192


Ho S. Y. W. Phillips M. J. Cooper A. Drummond A. J. 2005 Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution 22 1561 1568
DOI

Hudson Q. J. Wilkins R. J. Waas J. R. Hogg I. D. 2000 Low genetic variability in small populations of New Zealand kokako Callaeas cinerea wilsoni. Biological Conservation 96 105 112 DOI

Innes J. Hay R. Flux I. Bradfield P. Speed H. Jansen P. 1999 Successful recovery of North Island kokako Callaeas cinerea wilsoni populations, by adaptive management. Biological Conservation 87 201 214 DOI

King C. (1984). ‘Immigrant Killers: Introduced Predators and the Conservation of Birds in New Zealand.’ (Oxford University Press: Auckland.)

Knowles L. L. Maddison W. P. 2002 Statistical phylogeography. Molecular Ecology 11 2623 2635 DOI

Kumar S. Tamura K. Nei M. 2004 MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5 150 163

Lavers R. B. 1978 Distribution of the North Island kokako (Callaeas cinerea wilsoni): a review. Notornis 25 165 185


Leathwick J. R. Hay J. R. Fitzgerald A. E. 1983 The influence of browsing by introduced mammals on the decline of the North Island kokako. New Zealand Journal of Ecology 6 55 70


Lloyd B. D. 2003 a The demographic history of the New Zealand short-tailed bat Mystacina tuberculata inferred from modified control region sequences. Molecular Ecology 12 1895 1911
DOI

Lloyd B. D. 2003 b Intraspecific phylogeny of the New Zealand short-tailed bat Mystacina tuberculata inferred from multiple mitochondrial gene sequences. Systematic Biology 52 460 476

McBride K. 1981 Sighting of the South Island kokako Callaeus cinerea in Mt Aspiring National Park. Notornis 28 255 256


McGlone M. S. 1985 Plant biogeography and the Cenozoic history of New Zealand. New Zealand Journal of Botany 23 723 749


McGlone M. S. Duncan R. P. Heenan P. B. 2001 Endemism, species selection and the origin and distribution of the vascular plants of New Zealand. New Zealand Journal of Biogeography 28 199 216


McGlone M. S., Salinger M. J., and Moar N. T. (1993). Paleovegetation studies of New Zealand’s climate since the last glacial maximum. In ‘Global Climates Since the Last Glacial Maximum’. (Eds H. E. Wrigt, J. E. Kutzbach, T. Webb, W. F. Ruddiman, A. Street-Perrot and P. J. Bartlein.) pp. 294–317. (University of Minnesota Press: Minneapolis, MN.)

Milá B. Girman D. J. Kimura M. Smith T. B. 2000 Genetic evidence for the effect of a postglacial population expansion on the phylogeography of a North American songbird. Proceedings of the Royal Society of London Series B 267 1033 1040
DOI

Nei M. (1987). ‘Molecular Evolutionary Genetics.’ (Columbia University Press: New York.)

Neiman M. Lively C. M. 2004 Pleistocene glaciation is implicated in the phylogeographical structure of Potamopyrgus antipodarum, a New Zealand snail. Molecular Ecology 13 3085 3098 DOI

Newnham R. 1999 Environmental change in Northland, New Zealand during the last glacial and Holocene. Quaternary International 57–58 61 70 DOI

Palumbi S. R. (1996). Nucleic Acids II: The Polymerase Chain Reaction. In ‘Molecular Systematics’. (Eds D. M. Hillis, C. Moritz and B. K. Mable.) pp. 205–247. (Sinauer Associates: Sunderland, MA.)

Posada D. Crandall K. A. 1998 MODELTEST: testing the model of DNA substitution. Bioinformatics 14 817 818 DOI

Posada D. Crandall K. A. Templeton A. R. 2000 GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Molecular Ecology 9 487 488 DOI

Rozas J. Sanchez-DelBarrio J. C. Messeguer X. Rozas R. 2003 DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19 2496 2497 DOI

Ruegg K. C. Smith T. B. 2002 Not as the crow flies: a historical explanation for circuitous migration in Swainson’s thrush. Proceedings of the Royal Society Biological Sciences Series B 269 1375 1381 DOI

Sambrook J., Fritsch E. F., and Maniatis T. (1990). ‘Molecular Cloning: A Laboratory Manual.’ (Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York.)

Schultheis A. S. Weigt L. A. Hendricks A. C. 2002 Gene flow, dispersal, and nested clade analysis among populations of the stonefly Peltoperla tarteri in the southern Appalachians. Molecular Ecology 11 317 327 DOI

Sibley C. G., and Ahlquist J. E. (1990). ‘Phylogeny and Classification of Birds.’ (Yale University Press: New Haven, CT.)

Stevens G. M., McGlone M. S., and McCulloch B. (1995). ‘Prehistoric New Zealand.’ (Reed: Auckland.)

Swofford D. L. (1998). ‘PAUP*. Phylogenetic Analysis using Parsimony (*and Other Methods). Version 4.10b.’ (Sinauer Associates: Sunderland, MA.)

Tarr C. L. 1995 Primers for amplification and determination of mitochondrial control-region sequences in oscine passerines. Molecular Ecology 4 527 529

Templeton A. R. 1998 Nested clade analyses of phylogeographic data – testing hypotheses about gene flow and population history. Molecular Ecology 7 381 397
DOI

Templeton A. R. 2004 Statistical phylogeography: methods of evaluating and minimising inference errors. Molecular Ecology 13 789 809 DOI

Templeton A. R. Sing C. F. 1993 A cladistic analysis of phenotypic associations with haplotypes inferred from endonuclease restriction mapping, IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134 659 669

Templeton A. R. Crandall K. A. Sing C. F. 1992 A cladistic-analysis of phenotypic associations with haplotypes inferred from endonuclease restriction mapping and DNA-sequence data. 3. Cladogram estimation. Genetics 132 619 633


Thompson J. D. Higgins D. G. Gibson T. J. 1994 Improved sensitivity of profile searches through the use of sequence weights and gap excision. Computer Applications in the Biosciences 10 19 29


Trewick S. A. Wallis G. P. 2001 Bridging the ‘beech-gap’: New Zealand invertebrate phylogeography implicates Pleistocene glaciation and Pliocene isolation. Evolution 55 2170 2180


Trewick S. A. Wallis G. P. Morgan-Richards M. 2000 Phylogeographical pattern correlates with Pliocene mountain building in the alpine scree weta (Orthoptera, Anostostomatidae). Molecular Ecology 9 657 666
DOI

Turbott E. G. (1967). ‘Buller's Birds of New Zealand.’ (Whitcombe & Tombs Ltd: Christchurch.)

Turner T. F. Trexler J. C. Harris J. L. Haynes J. L. 2000 Nested cladistic analysis indicates population fragmentation shapes genetic diversity in a freshwater mussel. Genetics 154 777 785

Wardle P. (1991). ‘Vegetation of New Zealand.’ (Cambridge University Press; New York.)

Wenink P. W. Baker A. J. Tilanus M. G. J. 1994 Mitochondrial control-region sequences in two shorebird species, the turnstone and the dunlin, and their utility in population genetic studies. Molecular Biology and Evolution 11 22 31


Williams G. R. (1976). The New Zealand Wattlebirds (Callaeatidae). In ‘Proceedings of the 16th International Ornithological Congress’. (Eds H. J. Frith and J. H. Calaby.) pp. 161–170. (Australian Academy of Science: Canberra.)


Full Text PDF (202 KB) Export Citation