Register      Login
Environmental Chemistry Environmental Chemistry Society
Environmental problems - Chemical approaches
RESEARCH ARTICLE

Evidence for arsenic-driven redox chemistry in a wetland system: a field voltammetric study

L. Haffert A , S. G. Sander B , K. A. Hunter B and D. Craw A C
+ Author Affiliations
- Author Affiliations

A Geology Department, University of Otago, PO Box 56, Dunedin, New Zealand.

B Chemistry Department, University of Otago, PO Box 56, Dunedin, New Zealand.

C Corresponding author. Email: dave.craw@stonebow.otago.ac.nz

Environmental Chemistry 7(4) 386-397 https://doi.org/10.1071/EN10019
Submitted: 9 March 2010  Accepted: 4 June 2010   Published: 20 August 2010

Environmental context. The speciation of the toxic element arsenic directly controls its environmental mobility and toxicity. The current study took place on site in an historic mine processing environment that is extremely arsenic-rich and comparatively sulfur-deficient. When arsenic is one of the major chemical components, redox state and pH of the chemical system are closely linked to arsenic speciation.

Abstract. This study investigates the chemistry of the AsIII–AsV redox couple in association with As-rich processing residues (up to 40 wt%) from a historic gold mine in New Zealand. The site provides a unique natural laboratory of a sulfide-free chemical system driven by arsenolite dissolution. Field based cathodic stripping voltammetry, which circumvents post-sampling preservation issues, was successfully applied to analyse the AsIII to the microgram level. The AsIII–AsV redox couple, in particular the oxidation of AsIII, was found to have a noticeable influence on system pH and EH. The As redox pair itself is controlled by a range of processes, which were identified for the varying aqueous environments present on the studied site.

Additional keywords: arsenic speciation, cathodic stripping voltammetry.


Acknowledgements

We thank FRST for financial support and EcoChemie BV, the Netherlands, for the donation of a μAutolab III. We are grateful to David Barr for the analysis of auxiliary data. Department of Conservation kindly gave permission for sampling on historic sites, and provided logistical support. Discussions with James Pope were helpful at various stages of this study. We thank G. Pekrovski and other anonymous reviewers for their constructive comments on this paper.


References


[1]   P. L. Smedley , D. G. Kinniburgh , A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002 , 17,  517.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[2]   W. R. Cullen , K. J. Reimer , Arsenic speciation in the environment. Chem. Rev. 1989 , 89,  713.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[3]   B. Vink , Stability relations of antimony and arsenic compounds in the light of revised and extended Eh–pH diagrams. Chem. Geol. 1996 , 130,  21.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[4]   M. Williams , Arsenic in mine waters: an international study. Environ. Geol. 2001 , 40,  267.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[5]   B. Daus , J. Mattusch , R. Wennrich , H. Weiss , Investigation on stability and preservation of arsenic species in iron rich water samples. Talanta 2002 , 58,  57.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[6]   I. D. Clark , K. G. Raven , Sources and circulation of water and arsenic in the Giant Mine, Yellowknife, NWT, Canada. Isotopes Environ. Health Stud. 2004 , 40,  115.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[7]   F. Bodénan , P. Baranger , P. Piantone , A. Lassin , M. Azaroual , E. Gaucher , G. Braibant , Arsenic behaviour in gold-ore mill tailings, Massif Central, France: hydrochemical study and investigation of in situ redox signatures. Appl. Geochem. 2004 , 19,  1785.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[8]   J. A. Cherry , A. U. Shaik , D. E. Tallmann , R. V. Nicholson , Arsenic species as an indicator of redox conditions in groundwater. J. Hydrol. 1979 , 43,  373.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[9]   Rüde T. R., Wohnlich S., The couple As(V)–As(III) as a redox indicator, in Redox fundamentals, processes and applications (Eds J. Schüring, H. Schulz, W. Fischer, J. Böttcher, W. Duijnisveld) 2000, pp. 64–80 (Springer Verlag: New York).

[10]   H. Weigand , I. Argut , C. Marb , C. Koch , J. Diemer , An integrated sampling/speciation method for inorganic arsenic in soil solution. J. Plant Nutr. Soil Sci. 2007 , 170,  250.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[11]   G. Henze , W. Wagner , S. Sander , Speciation of arsenic(V) and arsenic(III) by cathodic stripping voltammetry in fresh water samples. Fresen. J. Anal. Chem. 1997 , 358,  741.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[12]   L. Haffert , D. Craw , Mineralogical controls on environmental mobility of arsenic from historic mine processing residues, New Zealand. Appl. Geochem. 2008 , 23,  1467.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[13]   WHO, Guidelines for Drinking-water Quality, 3rd edn 2004 (World Health Organization: Geneva).

[14]   D. Craw , C. Rufaut , L. Haffert , L. Paterson , Plant colonization and arsenic uptake on high arsenic mine wastes, New Zealand. Water Air Soil Pollut. 2007 , 179,  351.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[15]   DIN32633 Chemische Analytik – Verfahren der Standardaddition, 32633. G.I.N. (DIN) 1998 (Deutsches Institut Fuer Normung: Berlin).

[16]   R. B. McCleskey , D. K. Nordstrom , A. S. Maest , Preservation of water samples for arsenic(III/V) determinations: an evaluation of the literature and new analytical results. Appl. Geochem. 2004 , 19,  995.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[17]   APHA, Standard methods for the examination of water and wastewater 2005 (American Public Health Association: Washington, DC).

[18]   EPA, Methods for chemical analysis of water and wastes. EPA-600/4-79-020 1983 (US Environmental Protection Agency, Environmental Monitoring and Support Laboratory: Cincinnati, OH).

[19]   Methods for the determination of metals in environmental samples, Supplement 1 1994 (US Environmental Protection Agency, Environmental Monitoring and Support Laboratory: Cincinnati, OH).

[20]   Parkhurst D. L., Appelo C. A. J., Users guide to PHREEQC – a computer program for speciation, reaction-path, 1 D-transport and inverse geochemical calculations. Water-Resource Investigation Report 99-4259 1999 (US Geological Survey: Denver, CO).

[21]   Ball J. W., Nordstrom D. K., User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. US Geological Survey Open-File Report 91-183 1991 (US Geological Survey: Menlo Park, CA).

[22]   Bethke C. M., Geochemical Reaction Modeling 1996 (Oxford University Press: New York).

[23]   Delany J. M., Lundeen S. R., The LLNL thermodynamical database. Lawrence Livermore National Laboratory Report UCRL-21658 1990 (Lawrence Livermore National Laboratory: Livermore, CA).

[24]   E. Krause , V. A. Ettel , Solubilities and stabilities of ferric arsenate compounds. Hydrometallurgy 1989 , 22,  311.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[25]   K. A. Salzsauler , N. V. Sidenko , B. L. Sheriff , Arsenic mobility in alteration products of sulfide-rich, arsenopyrite-bearing mine wastes, Snow Lake, Manitoba, Canada. Appl. Geochem. 2005 , 20,  2303.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[26]   H. McCreadie , D. W. Blowes , C. J. Ptacek , J. L. Jambor , Influence of reduction reactions and solid-phase composition on porewater concentrations of arsenic. Environ. Sci. Technol. 2000 , 34,  3159.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[27]   Kölling M., Comparison of different methods for redox potential determination in natural waters, in Redox fundamentals, processes and applications (Eds J. Schüring, H. D. Schulz, W. R. Fischer, J. Böttcher, W. H. M. Duijnisveld) 2000, pp. 42–54 (Springer Verlag: New York).

[28]   L. Haffert , D. Craw , Processes of attenuation of dissolved arsenic downstream from historic gold mine sites, New Zealand. Sci. Total Environ. 2008 , 405,  286.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[29]   Stumm W., Morgan J. J., Aquatic Chemistry 1996 (Wiley: New York).

[30]   T. R. Holm , C. D. Curtiss , A comparison of oxidation-reduction potentials calculated from the As(V)/As(III) and Fe(III)/Fe(II) couples with measured platinum-electrode potentials in groundwater. J. Contam. Hydrol. 1989 , 5,  67.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[31]   Thorstenson D. C., The concept of electron activity and its relation to redox potentials in aqueous geochemical systems. US Geological Survey Open-File Report 84-072 1984 (US Geological Survey: Denver, CO).

[32]   R. D. Lindberg , D. D. Runnells , Ground water redox reactions: an analysis of equilibrium state applied to Eh measurements and geochemical modeling. Science 1984 , 225,  925.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[33]   A. J. Bednar , J. R. Garbarino , J. F. Ranville , T. R. Wildemann , Effects of iron on arsenic speciation and redox chemistry in acid mine water. J. Geochem. Explor. 2005 , 85,  55.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[34]   R. J. Bowell , Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl. Geochem. 1994 , 9,  279.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[35]   S. L. McGeehan , Arsenic sorption and redox reactions: relevance to transport and remediation. J. Environ. Sci. Heal. A 1996 , 31,  2319.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[36]   A. J. Roddick-Lanzilotta , A. J. McQuillan , D. Craw , Infrared spectroscopic characterisation of arsenate (V) ion adsorption from mine waters, Macraes mine, New Zealand. Appl. Geochem. 2002 , 17,  445.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[37]   Eary L. E., Schramke J. A., Rates of inorganic oxidation reactions involving dissolved oxygen, in Chemical Modeling of Aqueous Systems, II. ACS Symposium Series (Eds D. C. Melchior, R. L. Bassett) 1990, pp. 379–396 (American Chemical Society: Washington, DC).

[38]   M. Kim , J. Nriagu , Oxidation of arsenite in groundwater using ozone and oxygen. Sci. Total Environ. 2000 , 247,  71.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[39]   R. S. Oremland , J. F. Stolz , Arsenic, microbes and contaminated aquifers. Trends Microbiol. 2005 , 13,  45.
        | Crossref | GoogleScholarGoogle Scholar | PubMed |  open url image1

[40]   N. Belzile , A. Tessier , Interactions between arsenic and iron oxyhydroxides in lacustrine sediments. Geochim. Cosmochim. Acta 1990 , 54,  103.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[41]   G. Pokrovski , R. Gout , A. Zotov , J. Schott , J.-C. Harrichoury , Thermodynamic properties and stoichiometry of the As(III) hydroxide complexes at hydrothermal conditions. Geochim. Cosmochim. Acta 1996 , 60,  737.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[42]   S. E. Nichol , M. J. Harvey , I. S. Boyd , Ten years of rainfall chemistry in New Zealand. Clean Air 1997 , 31,  30.
         open url image1

[43]   J. D. Hem , Reactions of metal ions at surfaces of hydrous iron oxide. Geochim. Cosmochim. Acta 1977 , 41,  527.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[44]   M. L. Pierce , C. B. Moore , Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 1982 , 16,  1247.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[45]   J. A. Wilkie , J. G. Hering , Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloid Surface A 1996 , 107,  97.
        | Crossref | GoogleScholarGoogle Scholar |  open url image1

[46]   NIST, NIST Critically Selected Stability Constants of Metal Complexes Database 2004 (US Department of Commerce: Washington, DC).