CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Call for Papers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 10(3)

Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set

N. M. Donahue A G , W. Chuang A , S. A. Epstein A F , J. H. Kroll B , D. R. Worsnop C D , A. L. Robinson A , P. J. Adams A and S. N. Pandis A E

A Center for Atmospheric Particle Studies, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15217, USA.
B Department of Civil and Environmental Engineering and Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
C Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821, USA.
D University of Helsinki, Department of Physics, FI-00014 Helsinki, Finland.
E Department of Chemical Engineering, University of Patras, Patra, GR-26500, Greece.
F Present address: Department of Chemistry, 1102 Natural Sciences 2, University of California, Irvine, CA 92697, USA.
G Corrsponding author. Email: nmd@andrew.cmu.edu

Environmental Chemistry 10(3) 151-157 http://dx.doi.org/10.1071/EN13022
Submitted: 30 January 2013  Accepted: 26 April 2013   Published: 14 June 2013


 
 Full Text
 PDF (523 KB)
 Export Citation
 Print
  

Environmental context. Fine particles (aerosols) containing organic compounds are central players in two important environmental issues: aerosol-climate effects and human health effects (including mortality). Although organics constitute half or more of the total fine-particle mass, their chemistry is extremely complex; of critical importance is ongoing oxidation chemistry in both the gas phase and the particle phase. Here we present a method for representing that oxidation chemistry when the actual composition of the organics is not known and show that relatively slow oxidant uptake to particles plays a key role in the very existence of organic aerosols.

Abstract. Organic aerosols play a critical role in atmospheric chemistry, human health and climate. Their behaviour is complex. They consist of thousands of organic molecules in a rich, possibly highly viscous mixture that may or may not be in phase equilibrium with organic vapours. Because the aerosol is a mixture, compounds from all sources interact and thus influence each other. Finally, most ambient organic aerosols are highly oxidised, so the molecules are secondary products formed from primary emissions by oxidation chemistry and possibly non-oxidative association reactions in multiple phases, including gas-phase oxidation, aqueous oxidation, condensed (organic) phase reactions and heterogeneous interactions of all these phases. In spite of this complexity, we can make a strong existential statement about organic aerosol: They exist throughout the troposphere because heterogeneous oxidation by OH radicals is more than an order of magnitude slower than comparable gas-phase oxidation.



References

[1]  J. H. Kroll, N. M. Donahue, J. L. Jimenez, S. Kessler, M. R. Canagaratna, K. Wilson, K. E. Alteri, L. R. Mazzoleni, A. S. Wozniak, H. Bluhm, E. R. Mysak, J. D. Smith, C. E. Kolb, D.R. Worsnop, Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat. Chem. 2011, 3, 133.
CrossRef | CAS | PubMed |

[2]  A. B. Guenther, X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, X. Wang, The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development 2012, 5, 1471.
CrossRef |

[3]  R. Kamens, H. Jeffries, M. Gery, R. Wiener, K. Sexton, G. Howe, The impact of α-pinene on urban smog formation – an outdoor smog chamber study. Atmos. Environ. 1981, 15, 969.
CrossRef | CAS |

[4]  H. Jeffries, S. Tonnesen, A comparison of 2 photochemical-reaction mechanisms using mass-balance and process analysis. Atmos. Environ. 1994, 28, 2991.
CrossRef | CAS |

[5]  R. M. Kamens, M. Jaoui, Modeling aerosol formation from α-pinene + NOx in the presence of natural sunlight using gas-phase kinetics and gas-particle partitioning theory. Environ. Sci. Technol. 2001, 35, 1394.
CrossRef | CAS | PubMed |

[6]  W. Vizuete, H. E. Jeffries, T. W. Tesche, E. P. Olaguer, E. Couzo, Issues with ozone attainment methodology for Houston, TX. J. Air Waste Manag. Assoc. 2011, 61, 238.
CrossRef | CAS | PubMed |

[7]  R. Atkinson, Gas phase tropospheric chemistry of organic compounds. J. Phys. Chem. Ref. Data 1997, 26, 215.
CrossRef | CAS |

[8]  R. Prinn, J. Huang, R. Weiss, D. Cunnold, P. Fraser, P. Simmonds, A. McCulloch, C. Harth, S. Reimann, P. Salameh, S. O’Doherty, R. Wang, L. Porter, B. Miller, P. Krummel, Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophys. Res. Lett. 2005, 32, L07809.
CrossRef |

[9]  A. H. Goldstein, I. E. Galbally, Known and unexplored organic constituents in the Earth’s atmosphere. Environ. Sci. Technol. 2007, 41, 1514.
CrossRef | CAS | PubMed |

[10]  B. Aumont, S. Szopa, S. Madronich, Modelling the evolution of organic carbon during its gas-phase tropospheric oxidation: development of an explicit model based on a self generating approach. Atmos. Chem. Phys. 2005, 5, 2497.
CrossRef | CAS |

[11]  N. M. Donahue, S. A. Epstein, S. N. Pandis, A. L. Robinson, A 2-dimensional volatility basis set: 1. Organic mixing thermodynamics. Atmos. Chem. Phys. 2011, 11, 3303.
CrossRef | CAS |

[12]  N. M. Donahue, J. H. Kroll, A. L. Robinson, S. N. Pandis, A 2-dimensional volatility basis set: 2. Diagnostics of laboratory and ambient organic aerosol. Atmos. Chem. Phys. 2012, 12, 615.
CrossRef | CAS |

[13]  B. Zobrist, C. Marcolli, D. A. Pedernera, T. Koop, Do atmospheric aerosols form glasses? Atmos. Chem. Phys. 2008, 8, 5221.
CrossRef | CAS |

[14]  A. Virtanen, J. Joutsensaari, T. Koop, J. Kannosto, P. Yli-Pirila, J. Leskinen, J. M. Makela, J. K. Holopainen, U. Poeschl, M. Kulmala, D. R. Worsnop, A. Laaksonen, An amorphous solid state of biogenic secondary organic aerosol particles. Nature 2010, 467, 824.
CrossRef | CAS | PubMed |

[15]  T. Koop, J. Bookhold, M. Shiraiwa, U. Poeschl, Glass transition and phase state of organic compounds: dependency on molecular properties and implications for secondary organic aerosols in the atmosphere. Phys. Chem. Chem. Phys. 2011, 13, 19238.
CrossRef | CAS | PubMed |

[16]  T. D. Vaden, D. Imre, J. Ber’anek, M. Shrivastava, A. Zelenyuk, Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol. Proc. Natl. Acad. Sci. USA 2011, 108, 2190.
CrossRef | CAS | PubMed |

[17]  M. Shiraiwa, M. Ammann, T. Koop, U. Poeschl, Gas uptake and chemical aging of semisolid organic aerosol particles. Proc. Natl. Acad. Sci. USA 2011, 108, 11 003.
CrossRef | CAS |

[18]  V. Perraud, E. A. Bruns, M. J. Ezell, S. N. Johnson, Y. Yu, M. L. Alexander, A. Zelenyuk, D. Imre, W. L. Chang, D. Dabdub, J. F. Pankow, B. J. Finlayson-Pitts, Nonequilibrium atmospheric secondary organic aerosol formation and growth. Proc. Natl. Acad.Sci. USA 2012, 109, 2836.
CrossRef | CAS | PubMed |

[19]  A. P. Grieshop, N. M. Donahue, A. L. Robinson, Is the gas-particle partitioning in α-pinene secondary organic aerosol reversible? Geophys. Res. Lett. 2007, 34, L14810.
CrossRef |

[20]  J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, Tropospheric chemistry: a global perspective. J. Geophys. Res. – Atmos. 1981, 86, 7210.
CrossRef | CAS |

[21]  Y. Rudich, Laboratory perspectives on the chemical transformations of organic matter in atmospheric particles. Chem. Rev. 2003, 103, 5097.
CrossRef | CAS | PubMed |

[22]  Y. Rudich, N. M. Donahue, T. F. Mentel, Aging of organic aerosol: bridging the gap between laboratory and field studies. Annu. Rev. Phys. Chem. 2007, 58, 321.
CrossRef | CAS | PubMed |

[23]  M. Kalberer, D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A. S. H. Prévôt, R. Fisseha, E. Weingartner, V. Frankevic, R. Zenobi, U. Baltensperger, Identification of polymers as major components of atmospheric organic aerosols. Science 2004, 303, 1659.
CrossRef | CAS | PubMed |

[24]  M. Tolocka, M. Jang, J. Ginter, F. Cox, R. Kamens, M. Johnston, Formation of oligomers in secondary organic aerosol. Environ. Sci. Technol. 2004, 38, 1428.
CrossRef | CAS | PubMed |

[25]  J. H. Kroll, J. D. Smith, D. L. Che, S. H. Kessler, D. R. Worsnop, K. R. Wilson, Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Phys. Chem. Chem. Phys. 2009, 11, 8005.
CrossRef | CAS | PubMed |

[26]  H. J. Chacon-Madrid, A. A. Presto, N. M. Donahue, Functionalization vs fragmentation: n-aldehyde oxidation mechanisms and secondary organic aerosol formation. Phys. Chem. Chem. Phys. 2010, 12, 13 975.
CrossRef | CAS |

[27]  H. J. Chacon-Madrid, N. M. Donahue, Fragmentation v. functionalization: chemical aging and organic aerosol formation. Atmos. Chem. Phys. 2011, 11, 10 553.
CrossRef | CAS |

[28]  A. T. Lambe, T. B. Onasch, D. R. Croasdale, J. P. Wright, A. T. Martin, J. P. Franklin, P. Massoli, J. H. Kroll, M. R. Canagaratna, W. H. Brune, D. R. Worsnop, P. Davidovits, Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors. Environ. Sci. Technol. 2012, 46, 5430.
CrossRef | CAS | PubMed |

[29]  J. L. Jimenez, M. R. Canagaratna, N. M. Donahue, A. S. H. Prévôt, Q. Zhang, J. H. Kroll, P. F. DeCarlo, J. Allan, H. Coe, N. L. Ng, A. C. Aiken, K. D. Docherty, I. M. Ulbrich, A. P. Grieshop, A. L. Robinson, J. Duplissy, J. D. Smith, K. R. Wilson, V. A. Lanz, C. Hueglin, Y. L. Sun, A. Laaksonen, T. Raatikainen, J. Rautiainen, P. Vaattovaara, M. Ehn, M. Kulmala, J. M. Tomlinson, D. R. Collins, M. J. Cubison, E. J. Dunlea, J. A. Huffman, T. B. Onasch, M. R. Alfarra, P. I. Williams, K. Bower, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, D. Salcedo, L. Cottrell, R. Griffin, A. Takami, T. Miyoshi, S. Hatakeyama, A. Shimono, J. Y. Sun, Y. M. Zhang, K. Dzepina, J. R. Kimmel, D. Sueper, J. T. Jayne, S. C. Herndon, A. M. Trimborn, L. R. Williams, E. C. Wood, C. E. Kolb, U. Baltensperger, D. R. Worsnop, Evolution of organic aerosols in the atmosphere: a new framework connecting measurements to models. Science 2009, 326, 1525.
CrossRef | CAS | PubMed |

[30]  C. L. Heald, J. H. Kroll, J. L. Jimenez, K. S. Docherty, P. F. DeCarlo, A. C. Aiken, Q. Chen, S. T. Martin, D. K. Farmer, P. Artaxo, A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys. Res. Lett. 2010, 37, L08803.
CrossRef |

[31]  N. L. Ng, M. R. Canagaratna, J. L. Jimenez, P. S. Chhabra, J. H. Seinfeld, D. R. Worsnop, Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmos. Chem. Phys. 2011, 11, 6465.
CrossRef | CAS |

[32]  E. S. C. Kwok, R. Atkinson, Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: an update. Atmos. Environ. 1995, 29, 1685.
CrossRef | CAS |

[33]  S. H. Kessler, T. Nah, K. E. Daumit, J. D. Smith, S. R. Leone, C. E. Kolb, D. R. Worsnop, K. R. Wilson, J. H. Kroll, OH initiated heterogeneous aging of highly oxidized organic aerosol. J. Phys. Chem. A 2012, 116, 6358.
CrossRef | CAS | PubMed |

[34]  A. T. Lambe, M. A. Miracolo, C. J. Hennigan, A. L. Robinson, N. M. Donahue, Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes and steranes) in motor oil and diesel primary organic aerosols with OH radicals. Environ. Sci. Technol. 2009, 43, 8794.
CrossRef | CAS | PubMed |

[35]  N. M. Donahue, A. L. Robinson, E. R. Trump, I. Riipinen, J. H. Kroll, Volatility and aging of atmospheric organic aerosols. Top. Curr. Chem. in press.
CrossRef |

[36]  N. M. Donahue, A. L. Robinson, K. E. Huff Hartz, A. M. Sage, E. A. Weitkamp, Competitive oxidation in atmospheric aerosols: the case for relative kinetics. Geophys. Res. Lett. 2005, 32, L16805.
CrossRef |

[37]  A. L. Robinson, N. M. Donahue, W. F. Rogge, Photochemical oxidation and changes in molecular composition of organic aerosol in the regional context. J. Geophys. Res. – Atmos. 2006, 111, D03302.
CrossRef |

[38]  E. A. Weitkamp, A. T. Lambe, N. M. Donahue, A. L. Robinson, Laboratory measurements of the heterogeneous oxidation of condensed-phase organic molecular makers for motor vehicle exhaust. Environ. Sci. Technol. 2008, 42, 7950.
CrossRef | CAS | PubMed |

[39]  B. Ervens, B. J. Turpin, R. J. Weber, Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos. Chem. Phys. 2011, 11, 11 069.
CrossRef | CAS |

[40]  Y. Tan, Y. B. Lim, K. E. Altieri, S. P. Seitzinger, B. J. Turpin, Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal. Atmos. Chem. Phys. 2012, 12, 801.
CrossRef | CAS |

[41]  D. Hoffmann, A. Tilgner, Y. Iinuma, H. Herrmann, Atmospheric stability of levoglucosan: a detailed laboratory and modelling study. Environ. Sci. Technol. 2010, 44, 694.
CrossRef | CAS | PubMed |

[42]  A. A. May, R. Saleh, C. J. Hennign, N. M. Donahue, A. L. Robinson, Volatility of organic molecular markers used for source apportionment analysis: measurements and atmospheric implications. Environ. Sci. Technol. 2012, 46, 12 435.
CrossRef | CAS |

[43]  C. J. Hennigan, A. P. Sullivan, J. Jeffrey, L. Collett, A. L. Robinson, Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophys. Res. Lett. 2010, 37, L09806.
CrossRef |

[44]  L. Hildebrandt, E. Kostenidou, V. A. Lanz, A. S. H. Prévôt, U. Baltensperger, N. Mihalopoulos, A. Laaksonen, N. M. Donahue, S. N. Pandis, Sources and atmospheric processing of organic aerosol in the Mediterranean: insights from aerosol mass spectrometer factor analysis. Atmos. Chem. Phys. 2011, 11, 12 499.
CrossRef | CAS |

[45]  A. A. Presto, N. M. Donahue, Investigation of α-pinene + ozone secondary organic aerosol formation at low total aerosol mass. Environ. Sci. Technol. 2006, 40, 3536.
CrossRef | CAS | PubMed |

[46]  B. N. Murphy, N. M. Donahue, C. Fountoukis, M. Dall’Osto, C. O’Dowd, A. Kiendler-Scharr, S. N. Pandis, Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies. Atmos. Chem. Phys. 2012, 12, 10 797.
CrossRef | CAS |

[47]  N. M. Donahue, K. M. Henry, T. F. Mentel, A. K. Scharr, C. Spindler, B. Bohn, T. Brauers, H. P. Dorn, H. Fuchs, R. Tillmann, A. Wahner, H. Saathoff, K. H. Naumann, O. Möhler, T. Leisner, L. Müller, M.-C. Reinnig, T. Hoffmann, K. Salow, M. Hallquist, M. Frosch, M. Bilde, T. Tritscher, P. Barmet, A. P. Praplan, P. F. DeCarlo, J. Dommen, A. S. H. Prévôt, U. Baltensperger, Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. Proc. Natl. Acad. Sci. USA 2012, 109, 13 503.
CrossRef | CAS |

[48]  K. M. Wagstrom, S. N. Pandis, Determination of the age distribution of primary and secondary aerosol species using a chemical transport model. J. Geophys. Res. – Atmos. 2009, 114, D14303.
CrossRef |

[49]  H. Berresheim, C. Plass-Dulmer, T. Elste, N. Mihalopoulos, F. Rohrer, OH in the coastal boundary layer of Crete during MINOS: measurements and relationship with ozone photolysis. Atmos. Chem. Phys. 2003, 3, 639.
CrossRef | CAS |

[50]  L. Hildebrandt, E. Kostenidou, B. H. Lee, N. Mihalopoulos, D. R. Worsnop, N. M. Donahue, S. N. Pandis, Formation of low-volatility oxygenated organic aerosol in the atmosphere: insights from the Finokalia Aerosol Measurement Experiments. Geophys. Res. Lett. 2010, 37, L23801.
CrossRef |


   
 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014