CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Environmental Chemistry   
Environmental Chemistry
Journal Banner
  Environmental problems - Chemical approaches
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Boards
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Virtual Issues
Special Issues
Research Fronts
Sample Issue
Call for Papers
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
For Subscribers
Subscription Prices
Customer Service

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

 

Article << Previous     |     Next >>   Contents Vol 11(3)

A micro-sized model for the in vivo study of nanoparticle toxicity: what has Caenorhabditis elegans taught us?

Jinhee Choi A E , Olga V. Tsyusko B C E , Jason M. Unrine B C , Nivedita Chatterjee A , Jeong-Min Ahn A , Xinyu Yang C D , B. Lila Thornton C D , Ian T. Ryde C D , Daniel Starnes B C and Joel N. Meyer C D E

A School of Environmental Engineering and Graduate School of Energy and Environmental System Engineering, University of Seoul, Seoul 130-743, South Korea.
B Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA.
C The Center for Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708, USA.
D Nicholas School of the Environment and Center for the Environmental Implications of Nanotechnology, Duke University, Durham, NC 27708-0328, USA.
E Corresponding authors. Email: jinhchoi@uos.ac.kr; olga.tsyusko@uky.edu; jnm4@duke.edu

Environmental Chemistry 11(3) 227-246 http://dx.doi.org/10.1071/EN13187
Submitted: 17 October 2013  Accepted: 16 April 2014   Published: 20 June 2014


 
PDF (984 KB) $25
 Supplementary Material
 Export Citation
 Print
  

Environmental context. The ability of the soil nematode Caenorhabditis elegans to withstand a wide range of environmental conditions makes it an idea model for studying the bioavailability and effects of engineered nanomaterials. We critically review what has been learned about the environmental fate of engineered nanoparticles, their effects and their mechanisms of toxicity using this model organism. Future systematic manipulation of nanoparticle properties and environmental variables should elucidate how their interaction influences toxicity and increase the predictive power of nanomaterial toxicity studies.

Abstract. Recent years have seen a rapid increase in studies of nanoparticle toxicity. These are intended both to reduce the chances of unexpected toxicity to humans or ecosystems, and to inform a predictive framework that would improve the ability to design nanoparticles that are less likely to cause toxicity. Nanotoxicology research has been carried out using a wide range of model systems, including microbes, cells in culture, invertebrates, vertebrates, plants and complex assemblages of species in microcosms and mesocosms. These systems offer different strengths and have also resulted in somewhat different conclusions regarding nanoparticle bioavailability and toxicity. We review the advantages offered by the model organism Caenorhabditis elegans, summarise what has been learned about uptake, distribution and effects of nanoparticles in this organism and compare and contrast these results with those obtained in other organisms, such as daphnids, earthworms, fish and mammalian models.

Additional keywords: bioavailability, gene expression, mechanism of toxicity, uptake.


References

[1]  M. R. Wiesner, G. V. Lowry, K. L. Jones, M. F. Hochella, R. T. Di Giulio, E. Casman, E. S. Bernhardt, Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ. Sci. Technol. 2009, 43, 6458.
CrossRef | CAS | PubMed |

[2]  K. D. Hristovski, P. K. Westerhoff, J. D. Posner, Octanol–water distribution of engineered nanomaterials. J. Environ. Sci. Health – A Tox. Hazard. Subst. Environ. Eng. 2011, 46, 636.
CrossRef | CAS | PubMed |

[3]  F. von der Kammer, P. L. Ferguson, P. A. Holden, A. Masion, K. R. Rogers, S. J. Klaine, A. A. Koelmans, N. Horne, J. M. Unrine, Analysis of engineered nanomaterials in complex matrices (environment and biota): general considerations and conceptual case studies. Environ. Toxicol. Chem. 2012, 31, 32.
CrossRef | CAS | PubMed |

[4]  L. D. Lehman-McKeeman, Absorption, distribution, and excretion of toxicants, in Cassarett and Doull’s Toxicology: The Basis Science of Poisons (Ed. C. D. Klaassen) 2008, pp. 131–159 (McGraw-Hill Medical: New York).

[5]  M. Crosera, M. Bovenzi, G. Maina, G. Adami, C. Zanette, C. Florio, F. Filon Larese, Nanoparticle dermal absorption and toxicity: a review of the literature. Int. Arch. Occup. Environ. Health 2009, 82, 1043.
CrossRef | CAS | PubMed |

[6]  E. S. Bernhardt, B. P. Colman, M. F. Hochella, B. J. Cardinale, R. M. Nisbet, C. J. Richardson, L. Y. Yin, An ecological perspective on nanomaterial impacts in the environment. J. Environ. Qual. 2010, 39, 1954.
CrossRef | CAS | PubMed |

[7]  W. A. Boyd, M. V. Smith, G. E. Kissling, J. H. Freedman, Medium- and high-throughput screening of neurotoxicants using C. elegans. Neurotoxicol. Teratol. 2010, 32, 68.
CrossRef | CAS | PubMed |

[8]  T. I. Moy, A. L. Conery, J. Larkins-Ford, G. Wu, R. Mazitschek, G. Casadei, K. Lewis, A. E. Carpenter, F. M. Ausubel, High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chem. Biol. 2009, 4, 527.
CrossRef | CAS | PubMed |

[9]  R. Damoiseaux, S. George, M. Li, S. Pokhrel, Z. Ji, B. France, T. Xia, E. Suarez, R. Rallo, L. Madler, Y. Cohen, E. M. V. Hoek, A. Nel, No time to lose-high throughput screening to assess nanomaterial safety. Nanoscale 2011, 3, 1345.
CrossRef | CAS | PubMed |

[10]  S. Brenner, The genetics of Caenorhabditis elegans. Genetics 1974, 11, 1.

[11]  The C. elegans Sequencing Consortium Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 1998, 282, 2012.
CrossRef | PubMed |

[12]  I. Antoshechkin, P. W. Sternberg, The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat. Rev. Genet. 2007, 8, 518.
CrossRef | CAS | PubMed |

[13]  A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, C. C. Mello, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806.
CrossRef | CAS | PubMed |

[14]  M. A. Félix, C. Braendle, The natural history of Caenorhabditis elegans. Curr. Biol. 2010, 20, R965.
CrossRef | PubMed |

[15]  D. L. Riddle, P. S. Albert, Genetic and environmental regulation of dauer larva development, in C. elegans II (Eds T. Blumenthal, B. J. Meyer, J. R. Priess) 1997, pp. 739–768 (Cold Spring Harbor Laboratory Press: Plainview, NY).

[16]  W. A. Boyd, M. V. Smith, J. H. Freedman, Caenorhabditis elegans as a model in developmental toxicology. Methods Mol. Biol. 2012, 889, 15.
CrossRef | CAS | PubMed |

[17]  M. C. K. Leung, P. L. Williams, A. Benedetto, C. Au, K. J. Helmcke, M. Aschner, J. N. Meyer, Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol. Sci. 2008, 106, 5.
CrossRef | CAS |

[18]  E. J. Martinez-Finley, M. Aschner, Revelations from the nematode Caenorhabditis elegans on the complex interplay of metal toxicological mechanisms. J. Toxicol. 2011, 2011, 895236.
CrossRef | PubMed |

[19]  C. E. Steinberg, S. R. Sturzenbaum, R. Menzel, Genes and environment – striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci. Total Environ. 2008, 400, 142.
CrossRef | CAS | PubMed |

[20]  Y. Zhao, Q. Wu, Y. Li, D. Wang, Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Advances. 2013, 3, 5741.
CrossRef | CAS |

[21]  P. Williams, D. Dusenbery, Using the nematode Caenorhabditis elegans to predict mammalian acute lethality to metallic salts. Toxicol. Ind. Health 1988, 4, 469.
CrossRef | CAS | PubMed |

[22]  P. L. Williams, D. B. Dusenbery, Aquatic toxicity testing using the nematode, Caenorhabditis elegans. Environ. Toxicol. Chem. 1990, 9, 1285.
CrossRef | CAS |

[23]  W. A. Boyd, P. L. Williams, Comparison of the sensitivity of three nematode species to copper and their utility in aquatic and soil toxicity tests. Environ. Toxicol. Chem. 2003, 22, 2768.
CrossRef | CAS | PubMed |

[24]  S. Höss, S. Jansch, T. Moser, T. Junker, J. Rombke, Assessing the toxicity of contaminated soils using the nematode Caenorhabditis elegans as test organism. Ecotoxicol. Environ. Saf. 2009, 72, 1811.
CrossRef | PubMed |

[25]  R. Menzel, S. C. Swain, S. Hoess, E. Claus, S. Menzel, C. E. W. Steinberg, G. Reifferscheid, S. R. Sturzenbaum, Gene expression profiling to characterize sediment toxicity – a pilot study using Caenorhabditis elegans whole genome microarrays. BMC Genomics 2009, 10, 160.
CrossRef | PubMed |

[26]  W. Tyne, S. Lofts, D. J. Spurgeon, K. Jurkschat, C. Svendsen, A new medium for Caenorhabditis elegans toxicology and nanotoxicology studies designed to better reflect natural soil solution conditions. Environ. Toxicol. Chem. 2013, 32, 1711.
CrossRef | CAS | PubMed |

[27]  W. A. Boyd, S. J. McBride, J. R. Rice, D. W. Snyder, J. H. Freedman, A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay. Toxicol. Appl. Pharmacol. 2010, 245, 153.
CrossRef | CAS | PubMed |

[28]  J. Unrine, P. Bertsch, S. Hunyadi, Bioavailability, trophic transfer, and toxicity of manufactured metal and metal oxide nanoparticles in terrestrial environments. in Nanoscience and Nanotechnology: Environmental and Health Impacts (Ed. V. Grassian) 2008, pp. 345–366 (Wiley: Hoboken, NJ, USA).

[29]  D. G. Moerman, R. J. Barstead, Towards a mutation in every gene in Caenorhabditis elegans. Brief. Funct. Genomics Proteomics 2008, 7, 195.
CrossRef | CAS |

[30]  E. S. Han, F. L. Muller, V. I. Perez, W. Qi, H. Liang, L. Xi, C. Fu, E. Doyle, M. Hickey, J. Cornell, C. J. Epstein, L. J. Roberts, H. Van Remmen, A. Richardson, The in vivo gene expression signature of oxidative stress. Physiol. Genomics 2008, 34, 112.
CrossRef | CAS | PubMed |

[31]  R. S. Kamath, A. G. Fraser, Y. Dong, G. Poulin, R. Durbin, M. Gotta, A. Kanapin, N. Le Bot, S. Moreno, M. Sohrmann, D. P. Welchman, P. Zipperlen, J. Ahringer, Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003, 421, 231.
CrossRef | CAS | PubMed |

[32]  M. North, C. D. Vulpe, Functional toxicogenomics: mechanism-centered toxicology. Int. J. Mol. Sci. 2010, 11, 4796.
CrossRef | CAS | PubMed |

[33]  C. Anbalagan, I. Lafayette, M. Antoniou-Kourounioti, M. Haque, J. King, B. Johnsen, D. Baillie, C. Gutierrez, J. A. Martin, D. de Pomerai, Transgenic nematodes as biosensors for metal stress in soil pore water samples. Ecotoxicology 2012, 21, 439.
CrossRef | CAS | PubMed |

[34]  Y. Cui, S. McBride, W. Boyd, S. Alper, J. Freedman, Toxicogenomic analysis of Caenorhabditis elegans reveals novel genes and pathways involved in the resistance to cadmium toxicity. Genome Biol. 2007, 8, R122.
CrossRef | PubMed |

[35]  H. Ma, T. C. Glenn, C. H. Jagoe, K. L. Jones, P. L. Williams, A transgenic strain of the nematode Caenorhabditis elegans as a biomonitor for heavy metal contamination. Environ. Toxicol. Chem. 2009, 28, 1311.
CrossRef | CAS | PubMed |

[36]  E. A. Turner, G. L. Kroeger, M. C. Arnold, B. L. Thornton, R. T. Di Giulio, J. N. Meyer, Assessing different mechanisms of toxicity in mountaintop removal/valley fill coal mining-affected watershed samples using Caenorhabditis elegans. PLoS ONE 2013, 8, e75329.
CrossRef | CAS | PubMed |

[37]  H.-J. Eom, J.-M. Ahn, Y. Kim, J. Choi, Hypoxia inducible factor-1 (HIF-1)–flavin containing monooxygenase-2 (FMO-2) signaling acts in silver nanoparticles and silver ion toxicity in the nematode, Caenorhabditis elegans. Toxicol. Appl. Pharmacol. 2013, 270, 106.
CrossRef | CAS | PubMed |

[38]  J.-y. Roh, S. J. Sim, J. Yi, K. Park, K. H. Chung, D.-y. Ryu, J. Choi, Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ. Sci. Technol. 2009, 43, 3933.
CrossRef | CAS | PubMed |

[39]  O. Tsyusko, J. M. Unrine, D. J. Spurgeon, E. M. Blalock, D. Starnes, M. T. Tseng, G. Joice, P. M. Bertsch, Toxicogenomic responses of the model organism Caenorhabditis elegans to gold nanoparticles. Environ. Sci. Technol. 2012, 46, 4115.
CrossRef | CAS | PubMed |

[40]  K. Donaldson, F. Murphy, A. Schinwald, R. Duffin, C. A. Poland, Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine 2011, 6, 143.
CrossRef | CAS | PubMed |

[41]  W. Shoults-Wilson, B. Reinsch, O. Tsyusko, P. Bertsch, G. Lowry, J. Unrine, Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Sci. Soc. Am. J. 2011, 75, 365.
CrossRef | CAS |

[42]  W. A. Shoults-Wilson, B. C. Reinsch, O. V. Tsyusko, P. M. Bertsch, G. V. Lowry, J. M. Unrine, Effect of silver nanoparticle surface coating on bioaccumulation and reproductive toxicity in earthworms (Eisenia fetida). Nanotoxicology 2011, 5, 432.
CrossRef | CAS | PubMed |

[43]  S. L. Hughes, J. G. Bundy, E. J. Want, P. Kille, S. R. Stürzenbaum, The metabolomic responses of Caenorhabditis elegans to cadmium are largely independent of metallothionein status, but dominated by changes in cystathionine and phytochelatins. J. Proteome Res. 2009, 8, 3512.
CrossRef | CAS | PubMed |

[44]  M. C. K. Leung, J. V. Goldstone, W. A. Boyd, J. H. Freedman, J. N. Meyer, Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B 1 but not benzo a pyrene in vivo. Toxicol. Sci. 2010, 118, 444.
CrossRef | CAS |

[45]  J. A. Powell-Coffman, C. A. Bradfield, W. B. Wood, Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc. Natl. Acad. Sci. USA 1998, 95, 2844.
CrossRef | CAS | PubMed |

[46]  J. Kim, T. Shirasawa, Y. Miyamoto, The effect of TAT conjugated platinum nanoparticles on lifespan in a nematode Caenorhabditis elegans model. Biomaterials 2010, 31, 5849.
CrossRef | CAS | PubMed |

[47]  A. Kahru, H.-C. Dubourguier, From ecotoxicology to nanoecotoxicology. Toxicology 2010, 269, 105.
CrossRef | CAS | PubMed |

[48]  J.-M. Ahn, H. J. Eom, X. Yang, J. N. Meyer, J. Choi, Comparative toxicity of silver nanoparticles on oxidative stress and DNA damage in the nematode, Caenorhabditis elegans. Chemosphere 2014, 108, 343.
CrossRef | CAS | PubMed |

[49]  X. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, J. N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ. Sci. Technol. 2012, 46, 1119.
CrossRef | CAS | PubMed |

[50]  M. Tejamaya, I. Römer, R. C. Merrifield, J. R. Lead, Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 2012, 46, 7011.
CrossRef | CAS | PubMed |

[51]  O. V. Tsyusko, J. M. Unrine, P. M. Bertsch, Toxicity and transcriptomic responses of silver nanoparticles to Caenorhabditis elegans, in Proceedings ICOBTE 2011: 11th International Conference on Biogeochemistry of Trace Elements, 3–7 July 2011, Florence, Italy (Ed. K. Scheckel) 2011, S9-19 (International Society of Trace Element Biogeochemistry: Florence, Italy).

[52]  G. Oberdörster, A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, S. Olin, N. Monteiro-Riviere, D. Warheit, H. Yang, Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 2005, 2, 8.
CrossRef | PubMed |

[53]  Y. Pan, S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, W. Jahnen-Dechent, Size-dependent cytotoxicity of gold nanoparticles. Small 2007, 3, 1941.
CrossRef | CAS | PubMed |

[54]  M. V. Park, A. M. Neigh, J. P. Vermeulen, L. J. de la Fonteyne, H. W. Verharen, J. J. Briede, H. van Loveren, W. H. de Jong, The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011, 32, 9810.
CrossRef | CAS | PubMed |

[55]  H.-J. Eom, J. Choi, Oxidative stress of silica nanoparticles in human bronchial epithelial cell, Beas-2B. Toxicol. In Vitro 2009, 23, 1326.
CrossRef | CAS | PubMed |

[56]  S. Hussain, K. Hess, J. Gearhart, K. Geiss, J. Schlager, In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 2005, 19, 975.
CrossRef | CAS | PubMed |

[57]  H. Yin, H. P. Too, G. M. Chow, The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 2005, 26, 5818.
CrossRef | CAS | PubMed |

[58]  J. Y. Roh, Y. K. Park, K. Park, J. Choi, Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints. Environ. Toxicol. Pharmacol. 2010, 29, 167.
CrossRef | CAS | PubMed |

[59]  M. Auffan, J. Rose, J. Y. Bottero, G. V. Lowry, J. P. Jolivet, M. R. Wiesner, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634.
CrossRef | CAS | PubMed |

[60]  C. D. Klaassen, Casarett and Doull’s Toxicology. The Basic Science of Poisons 2007 (McGraw-Hill Health Professions Division: New York).

[61]  Y. Qu, W. Li, Y. Zhou, X. Liu, L. Zhang, L. Wang, Y.-f. Li, A. Iida, Z. Tang, Y. Zhao, Z. Chai, C. Chen, Full assessment of fate and physiological behavior of quantum dots utilizing Caenorhabditis elegans as a model organism. Nano Lett. 2011, 11, 3174.
CrossRef | CAS | PubMed |

[62]  J. N. Meyer, C. A. Lord, X. Y. Yang, E. A. Turner, A. R. Badireddy, S. M. Marinakos, A. Chilkoti, M. R. Wiesner, M. Auffan, Intracellular uptake and associated toxicity of silver nanoparticles in Caenorhabditis elegans. Aquat. Toxicol. 2010, 100, 140.
CrossRef | CAS | PubMed |

[63]  H. Ma, P. Bertsch, T. Glenn, N. Kabengi, P. Williams, Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 2009, 28, 1324.
CrossRef | CAS | PubMed |

[64]  J. Liu, R. H. Hurt, Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010, 44, 2169.
CrossRef | CAS | PubMed |

[65]  B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006, 6, 662.
CrossRef | CAS | PubMed |

[66]  C. M. Goodman, C. D. McCusker, T. Yilmaz, V. M. Rotello, Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug. Chem. 2004, 15, 897.
CrossRef | CAS | PubMed |

[67]  B. Collin, E. Oostveen, O. V. Tsyusko, J. M. Unrine, Influence of natural organic matter and surface charge on the toxicity and bioaccumulation of functionalized ceria nanoparticles in Caenorhabditis elegans. Environ. Sci. Technol. 2014, 48, 1280.
CrossRef | CAS | PubMed |

[68]  S. W. Kim, S.-H. Nam, Y.-J. An, Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2012, 77, 64.
CrossRef | CAS | PubMed |

[69]  P. L. Williams, D. B. Dusenbery, Aquatic toxicity testing using the nematode, Caenorhabditis elegans. Environ. Toxicol. Chem. 1990, 9, 1285.
CrossRef | CAS |

[70]  C. P. Cressman III, P. L. Williams, Reference Toxicants for toxicity testing using Caenorhabditis elegans in aquatic media, in Environmental Toxicology and Risk Assessment: Modeling and Risk Assessment (Eds F. J. Dwyer, T. R. Doane, M. L. Hinman) 1997, pp. 518–533 (American Society for Testing and Materials: West Conshohocken, PA, USA).

[71]  M. Freeman, C. Peredney, P. Williams, A soil bioassay using the nematode Caenorhabditis elegans, in Environmental Toxicology and RiskAssessment: Standardization of Biomarkers for Endocrine Disruption and Environmental Assessment (Eds D. S. Henshel, M. C. Black, M. C. Harrass) 2000, pp. 305–318. (American Society for Testing and Materials: West Conshohocken, PA, USA).

[72]  S. Höss, M. Haitzer, W. Traunspurger, C. E. W. Steinberg, Growth and fertility of Caenorhabditis elegans (Nematoda) in unpolluted freshwater sediments: response to particle size distribution and organic content. Environ. Toxicol. Chem. 1999, 18, 2921.
CrossRef |

[73]  C. L. Peredney, P. L. Williams, Utility of Caenorhabditis elegans for assessing heavy metal contamination in artificial soil. Arch. Environ. Contam. Toxicol. 2000, 39, 113.
| CAS | PubMed |

[74]  B. P. Lanphear, C. V. Vorhees, D. C. Bellinger, Protecting children from environmental toxins. PLoS Med. 2005, 2, e61.
CrossRef | PubMed |

[75]  A. Makri, M. Goveia, J. Balbus, R. Parkin, Children’s susceptibility to chemicals: a review by developmental stage. J. Toxicol. Environ. Health – B 2004, 7, 417.
CrossRef | CAS |

[76]  J. M. McKim, Evaluation of tests with early life stages of fish for predicting long-term toxicity. Fish Res. Board Can. 1977, 34, 1148.
CrossRef | CAS |

[77]  G. M. Rand, P. G. Wells, L. S. McCarthy, Fundamentals of aquatic toxicology effects, environmental fate, and risk assessment, in Introduction to Aquatic Toxicology 1995, pp. 3–70 (Taylor and Francis Publishers: North Palm Beach, FL, USA).

[78]  P. Khare, M. Sonane, R. Pandey, S. Ali, K. C. Gupta, A. Satish, Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. J. Biomed. Nanotech. 2011, 7, 116.
CrossRef | CAS |

[79]  H. Wang, R. L. Wick, B. Xing, Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ. Pollut. 2009, 157, 1171.
CrossRef | CAS | PubMed |

[80]  X. Yang, C. Jiang, H. Hsu-Kim, A. R. Badireddy, M. Dykstra, M. R. Wiesner, D. E. Hinton, J. M. Meyer, Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environ. Sci. Technol. 2014, 48, 3486.
CrossRef | CAS | PubMed |

[81]  L. Ellegaard-Jensen, K. A. Jensen, A. Johansen, Nano-silver induces dose-response effects on the nematode Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2012, 80, 216.
CrossRef | CAS | PubMed |

[82]  N. Fielenbach, A. Antebi, C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 2008, 22, 2149.
CrossRef | CAS | PubMed |

[83]  H. Ma, N. J. Kabengi, P. M. Bertsch, J. M. Unrine, T. C. Glenn, P. L. Williams, Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: the importance of illumination mode and primary particle size. Environ. Pollut. 2011, 159, 1473.
CrossRef | CAS | PubMed |

[84]  C. Levard, E. M. Hotze, G. V. Lowry, G. E. Brown, Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900.
CrossRef | CAS | PubMed |

[85]  C. Levard, E. M. Hotze, B. P. Colman, L. Truong, X. Yang, A. J. Bone, G. E. Brown, R. L. Tanguay, R. T. Di Giulio, E. S. Bernhardt, J. M. Meyer, M. R. Wiesner, Lowry GV, Sulfidation and chlorination of silver nanoparticles: natural antidotes to their ecotoxicity. Environ. Sci. Technol. 2013, 47, 13 440.
CrossRef | CAS |

[86]  S. Mahendra, H. Zhu, V. L. Colvin, P. J. Alvarez, Quantum dot weathering results in microbial toxicity. Environ. Sci. Technol. 2008, 42, 9424.
CrossRef | CAS | PubMed |

[87]  A. Verma, O. Uzun, Y. Hu, Y. Hu, H.-S. Han, N. Watson, S. Chen, D. J. Irvine, F. Stellacci, Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat. Mater. 2008, 7, 588.
CrossRef | CAS | PubMed |

[88]  P. R. Leroueil, S. Hong, A. Mecke, J. R. Baker, B. G. Orr, M. M. B. Holl, Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc. Chem. Res. 2007, 40, 335.
CrossRef | CAS | PubMed |

[89]  B. D. Chithrani, W. C. W. Chan, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542.
CrossRef | CAS | PubMed |

[90]  N. W. S. Kam, Z. A. Liu, H. J. Dai, Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. 2006, 45, 577.
CrossRef | CAS |

[91]  G. D. Liu, Y. H. Lin, Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal. Chem. 2005, 77, 5894.
CrossRef | CAS |

[92]  J. Rejman, V. Oberle, I. S. Zuhorn, D. Hoekstra, Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004, 377, 159.
CrossRef | CAS | PubMed |

[93]  B. L. Zhang, Y. Q. Li, C. Y. Fang, C. C. Chang, C. S. Chen, Y. Y. Chen, H. C. Chang, Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. Small 2009, 5, 2716.
CrossRef | CAS |

[94]  W. Hild, K. Pollinger, A. Caporale, C. Cabrele, M. Keller, N. Pluym, A. Buschauer, R. Rachel, J. Tessmar, M. Breunig, A. Goepferich, G protein-coupled receptors function as logic gates for nanoparticle binding and cell uptake. Proc. Natl. Acad. Sci. USA 2010, 107, 10 667.
CrossRef | CAS |

[95]  N. Armstrong, M. Ramamoorthy, D. Lyon, K. Jones, A. Duttaroy, Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS ONE 2013, 8, e53186.
CrossRef | CAS | PubMed |

[96]  A. P. Page, I. L. Johnstone, The cuticle, in WormBook: the Online Review of C. elegans Biology 2007, pp. 1–15 (WormBook Research Community: Pasadena, CA).

[97]  R. D. Handy, G. Cornelis, T. Fernandes, O. Tsyusko, A. Decho, T. Sabo-Attwood, C. Metcalfe, J. A. Steevens, S. J. Klaine, A. A. Koelmans, N. Horne, Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ. Toxicol. Chem. 2012, 31, 15.
CrossRef | CAS | PubMed |

[98]  K. V. Thomas, J. Farkas, E. Farmen, P. Christian, K. Langford, Q. L. Wu, K. E. Tollefsen, Effects of dispersed aggregates of carbon and titanium dioxide engineered nanoparticles on rainbow trout hepatocytes. J. Toxicol. Environ. Health A 2011, 74, 466.
CrossRef | CAS | PubMed |

[99]  Y. J. Chae, C. H. Pham, J. Lee, E. Bae, J. Yi, M. B. Gu, Evaluation of the toxic impact of silver nanoparticles on Japanese medaka (Oryzias latipes). Aquat. Toxicol. 2009, 94, 320.
CrossRef | CAS | PubMed |

[100]  V. E. Fako, D. Y. Furgeson, Zebrafish as a correlative and predictive model for assessing biomaterial nanotoxicity. Adv. Drug Deliv. Rev. 2009, 61, 478.
CrossRef | CAS | PubMed |

[101]  S. Kashiwada, M. E. Ariza, T. Kawaguchi, Y. Nakagame, B. S. Jayasinghe, K. Gärtner, H. Nakamura, Y. Kagami, T. Sabo-Attwood, L. Ferguson, G. T. Chandler, Silver nano-colloids disrupt medaka embryogenesis through vital gene expressions. Environ. Sci. Technol. 2012, 46, 6278.
CrossRef | CAS | PubMed |

[102]  Y.-Y. Tsai, Y.-H. Huang, Y.-L. Chao, K.-Y. Hu, L.-T. Chin, S.-H. Chou, A.-L. Hour, Y.-D. Yao, C.-S. Tu, Y.-J. Liang, C.-Y. Tsai, H.-Y. Wu, S.-W. Tan, H.-M. Chen, Identification of the nanogold particle-induced endoplasmic reticulum stress by omic techniques and systems biology analysis. ACS Nano 2011, 5, 9354.
CrossRef | CAS | PubMed |

[103]  O. V. Tsyusko, S. S. Hardas, W. A. Shoults-Wilson, C. P. Starnes, G. Joice, D. A. Butterfield, J. M. Unrine, Short-term molecular-level effects of silver nanoparticle exposure on the earthworm, Eisenia fetida. Environ. Pollut. 2012, 171, 249.
CrossRef | CAS | PubMed |

[104]  Q. Ma, Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol. Ther. 2010, 125, 376.
CrossRef | CAS | PubMed |

[105]  J. J. Li, L. Zou, D. Hartono, C. N. Ong, B. H. Bay, L. Y. Lanry Yung, Gold nanoparticles induce oxidative damage in lung fibroblasts in vitro. Adv. Mater. 2008, 20, 138.
CrossRef | CAS |

[106]  L. K. Limbach, P. Wick, P. Manser, R. N. Grass, A. Bruinink, W. J. Stark, Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007, 41, 4158.
CrossRef | CAS | PubMed |

[107]  L. Risom, P. Moller, S. Loft, Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res. – Fund. Mol. M. 2005, 592, 119.
CrossRef | CAS |

[108]  A. Stroh, C. Zimmer, C. Gutzeit, M. Jakstadt, F. Marschinke, T. Jung, H. Pilgrimm, T. Grune, Iron oxide particles for molecular magnetic resonance imaging cause transient oxidative stress in rat macrophages. Free Radic. Biol. Med. 2004, 36, 976.
CrossRef | CAS | PubMed |

[109]  D. Lim, J.-y. Roh, H.-j. Eom, J.-Y. Choi, J. Hyun, J. Choi, Oxidative stress-related pmk-1 P38 MAPK activation as a mechanism for toxicity of silver nanoparticles to reproduction in the nematode Caenorhabditis elegans. Environ. Toxicol. Chem. 2012, 31, 585.
CrossRef | CAS | PubMed |

[110]  S. S. Hardas, D. A. Butterfield, R. Sultana, M. T. Tseng, M. Dan, R. L. Florence, J. M. Unrine, U. M. Graham, P. Wu, E. A. Grulke, R. A. Yokel, Brain distribution and toxicological evaluation of a systemically delivered engineered nanoscale ceria. Toxicol. Sci. 2010, 116, 562.
CrossRef | CAS | PubMed |

[111]  S. S. Hardas, R. Sultana, G. Warrier, M. Dan, R. L. Florence, P. Wu, E. A. Grulke, M. T. Tseng, J. M. Unrine, U. M. Graham, R. A. Yokel, D. A. Butterfield, Rat brain pro-oxidant effects of peripherally administered 5 nm ceria 30 days after exposure. Neurotoxicology 2012, 33, 1147.
CrossRef | CAS | PubMed |

[112]  M. T. Tseng, X. Lu, X. Duan, S. S. Hardas, R. Sultana, P. Wu, J. M. Unrine, U. Graham, D. A. Butterfield, E. A. Grulke, R. A. Yokel, Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria. Toxicol. Appl. Pharmacol. 2012, 260, 173.
CrossRef | CAS | PubMed |

[113]  H. Zhang, X. He, Z. Zhang, P. Zhang, Y. Li, Y. Ma, Y. Kuang, Y. Zhao, Z. Chai, Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. Environ. Sci. Technol. 2011, 45, 3725.
CrossRef | CAS | PubMed |

[114]  N. Mohan, C. S. Chen, H. H. Hsieh, Y. C. Wu, H. C. Chang, In vivo imaging and toxicity assessments of fluorescent nanodiamonds in Caenorhabditis elegans. Nano Lett. 2010, 10, 3692.
CrossRef | CAS | PubMed |

[115]  J. C. Zhou, Z. L. Yang, W. Dong, R. J. Tang, L. D. Sun, C. H. Yan, Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. Biomaterials 2011, 32, 9059.
CrossRef | CAS | PubMed |

[116]  T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J. I. Yeh, M. R. Wiesner, A. E. Nel, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006, 6, 1794.
CrossRef | CAS | PubMed |

[117]  R. T. Di Giulio, J. N. Meyer, Reactive oxygen species and oxidative stress, in Toxicology of Fishes (Eds R. T. Di Giulio, D. E. Hinton) 2008, pp. 273–324 (Taylor and Francis: London).

[118]  J. N. Meyer, M. C. K. Leung, J. P. Rooney, A. Sendoel, M. O. Hengartner, G. E. Kisby, A. S. Bess, Mitochondria as a target of environmental toxicants. Toxicol. Sci. 2013, 134, 1.
CrossRef | CAS | PubMed |

[119]  T. R. Pisanic, S. Jin, V. I. Shubayev, Iron oxide magnetic nanoparticle nanotoxicity: incidence and mechanisms, in Nanotoxicity: From in vivo and in vitro Models to Health Risks (Eds S. Sahu, D. Casciano) 2009, pp. 397–425 (Wiley: London).

[120]  S. J. Soenen, P. Rivera-Gil, J. M. Montenegro, W. J. Parak, S. C. De Smedt, K. Braeckmans, Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 2011, 6, 446.
CrossRef | CAS |

[121]  F. Marano, S. Hussain, F. Rodrigues-Lima, A. Baeza-Squiban, S. Boland, Nanoparticles: molecular targets and cell signalling. Arch. Toxicol. 2011, 85, 733.
CrossRef | CAS | PubMed |

[122]  A. Nel, T. Xia, N. Li, Toxic potential of materials at the nanolevel. Science 2006, 311, 622.
CrossRef | CAS | PubMed |

[123]  J. A. Coffman, A. Coluccio, A. Planchart, A. J. Robertson, Oral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2. Dev. Biol. 2009, 330, 123.
CrossRef | CAS | PubMed |

[124]  Y. Li, S. Yu, Q. Wu, M. Tang, Y. Pu, D. Wang, Chronic Al2O3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. J. Hazard. Mater. 2012, 219–220, 221.
CrossRef | PubMed |

[125]  S. H. Yu, Q. Rui, T. Cai, Q. L. Wu, Y. X. Li, D. Y. Wang, Close association of intestinal autofluorescence with the formation of severe oxidative damage in intestine of nematodes chronically exposed to Al2O3-nanoparticle. Environ. Toxicol. Pharmacol. 2011, 32, 233.
CrossRef | CAS |

[126]  D. Lindholm, H. Wootz, L. Korhonen, ER stress and neurodegenerative diseases. Cell Death Differ. 2006, 13, 385.
CrossRef | CAS | PubMed |

[127]  A. E. Nel, L. Mädler, D. Velegol, T. Xia, E. Hoek, P. Somarsundaran, F. Klaessig, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater. 2009, 8, 543.
CrossRef | CAS | PubMed |

[128]  E. Lai, T. Teodoro, A. Volchuk, Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 2007, 22, 193.
CrossRef | CAS | PubMed |

[129]  K. A. Haskins, J. F. Russell, N. Gaddis, H. K. Dressman, A. Aballay, Unfolded protein response genes regulated by CED-1 are required for Caenorhabditis elegans innate immunity. Dev. Cell 2008, 15, 87.
CrossRef | CAS | PubMed |

[130]  N. Chatterjee, H. J. Eom, J. Choi, Effects of silver nanoparticles on oxidative DNA damage repair as a function of p38MAPK status: a comparative approach using human jurkat T cells and the nematode Caenorhabditis elegans. Environ. Mol. Mutagen. 2014, 55, 122.
CrossRef | CAS | PubMed |

[131]  L. Stergiou, M. O. Hengartner, Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ. 2004, 11, 21.
CrossRef | CAS | PubMed |

[132]  B. Lant, W. B. Derry, Methods for detection and analysis of apoptosis signaling in the C. elegans germline. Methods 2013, 61, 174.
CrossRef | CAS | PubMed |

[133]  Y. J. Cha, J. Lee, S. S. Choi, Apoptosis-mediated in vivo toxicity of hydroxylated fullerene nanoparticles in soil nematode Caenorhabditis elegans. Chemosphere 2012, 87, 49.
CrossRef | CAS | PubMed |

[134]  R. J. Griffitt, J. Luo, J. Gao, J.-C. Bonzongo, D. S. Barber, Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 2008, 27, 1972.
CrossRef | CAS | PubMed |

[135]  C. Völker, C. Boedicker, J. Daubenthaler, M. Oetken, J. Oehlmann, Comparative toxicity assessment of nanosilver on three Daphnia species in acute, chronic and multi-generation experiments. PLoS ONE 2013, 8, e75026.
CrossRef | PubMed |

[136]  M. C. Stensberg, R. Madangopal, G. Yale, Q. Wei, H. Ochoa-Acuña, A. Wei, E. S. Mclamore, J. Rickus, D. M. Porterfield, M. S. Sepúlveda, Silver nanoparticle-specific mitotoxicity in Daphnia magna. Nanotoxicology 2014, 8, 833.
CrossRef | CAS | PubMed |

[137]  N. Adam, C. Schmitt, J. Galceran, E. Companys, A. Vakurov, R. Wallace, D. Knapen, R. Blust, The chronic toxicity of ZnO nanoparticles and ZnCl2 to Daphnia magna and the use of different methods to assess nanoparticle aggregation and dissolution. Nanotoxicology 2014, 8, 709.
| CAS | PubMed |

[138]  X. Zhu, L. Zhu, Y. Chen, S. Tian, Acute toxicities of six manufactured nanomaterial suspensions to Daphnia magna. J. Nanopart. Res. 2009, 11, 67.
CrossRef | CAS |

[139]  D. A. Arndt, J. Chen, M. Moua, R. D. Klaper, Multigeneration impacts on Daphnia magna of carbon nanomaterials with differing core structures and functionalizations. Environ. Toxicol. Chem. 2014, 33, 541.
CrossRef | CAS | PubMed |

[140]  H. C. Poynton, J. M. Lazorchak, C. A. Impellitteri, B. J. Blalock, K. Rogers, H. J. Allen, A. Loguinov, J. L. Heckman, S. Govindasmawy, Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles. Environ. Sci. Technol. 2012, 46, 6288.
CrossRef | CAS | PubMed |

[141]  J. K. Colbourne, M. E. Pfrender, D. Gilbert, W. K. Thomas, A. Tucker, T. H. Oakley, S. Tokishita, A. Aerts, G. J. Arnold, M. K. Basu, D. J. Bauer, C. E. Cáceres, L. Carmel, C. Casola, J.-H. Choi, J. C. Detter, Q. Dong, S. Dusheyko, B. D. Eads, T. Fröhlich, K. A. Geiler-Samerotte, D. Gerlach, P. Hatcher, S. Jogdeo, J. Krijgsveld, E. V. Kriventseva, D. Kültz, C. Laforsch, E. Lindquist, J. Lopez, J. R. Manak, J. Muller, J. Pangilinan, R. P. Patwardhan, S. Pitluck, E. J. Pritham, A. Rechtsteiner, M. Rho, I. B. Rogozin, O. Sakarya, A. Salamov, S. Schaack, H. Shapiro, Y. Shiga, C. Skalitzky, Z. Smith, A. Souvorov, W. Sung, Z. Tang, D. Tsuchiya, H. Tu, H. Vos, M. Wang, Y. I. Wolf, H. Yamagata, T. Yamada, Y. Ye, J. R. Shaw, J. Andrews, T. J. Crease, H. Tang, S. M. Lucas, H. M. Robertson, P. Bork, E. V. Koonin, E. M. Zdobnov, I. V. Grigoriev, M. Lynch, J. L. Boore, The ecoresponsive genome of Daphnia pulex. Science 2011, 331, 555.
CrossRef | CAS | PubMed |

[142]  X. Zhu, J. Wang, X. Zhang, Y. Chang, Y. Chen, Trophic transfer of TiO2 nanoparticles from daphnia to zebrafish in a simplified freshwater food chain. Chemosphere 2010, 79, 928.
CrossRef | CAS | PubMed |

[143]  J. M. Unrine, S. E. Hunyadi, O. V. Tsyusko, W. Rao, W. A. Shoults-Wilson, P. M. Bertsch, Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environ. Sci. Technol. 2010, 44, 8308.
CrossRef | CAS | PubMed |

[144]  C. Coutris, T. Hertel-Aas, E. Lapied, E. J. Joner, D. H. Oughton, Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida. Nanotoxicology 2012, 6, 186.
CrossRef | CAS | PubMed |

[145]  W. A. Shoults-Wilson, O. I. Zhurbich, D. H. McNear, O. V. Tsyusko, P. M. Bertsch, J. M. Unrine, Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida). Ecotoxicology 2011, 20, 385.
CrossRef | CAS | PubMed |

[146]  P. V. AshaRani, G. L. K. Mun, M. P. Hande, S. Valiyaveettil, Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279.
CrossRef | CAS | PubMed |

[147]  C. M. Ho, S. K. Yau, C. N. Lok, M. H. So, C. M. Che, Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study. Chem. Asian J. 2010, 5, 285.
CrossRef | CAS | PubMed |

[148]  X. Zhu, L. Zhu, Y. Li, Z. Duan, W. Chen, P. J. J. Alvarez, Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: buckminsterfullerene aggregates (nC60) and fullerol. Environ. Toxicol. Chem. 2007, 26, 976.
CrossRef | CAS | PubMed |

[149]  X. Zhu, L. Zhu, Z. Duan, R. Qi, Y. Li, Y. Lang, Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2008, 43, 278.
CrossRef | CAS |

[150]  J. Cheng, E. Flahaut, S. H. Cheng, Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environ. Toxicol. Chem. 2007, 26, 708.
CrossRef | CAS | PubMed |

[151]  K. J. Lee, P. D. Nallathamby, L. M. Browning, C. J. Osgood, X.-H. N. Xu, In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 2007, 1, 133.
CrossRef | CAS | PubMed |

[152]  A. Pluskota, E. Horzowski, O. Bossinger, A. von Mikecz, In Caenorhabditis elegans nanoparticle-bio-interactions become transparent: silica-nanoparticles induce reproductive senescence. PLoS ONE 2009, 4, e6622.
CrossRef | PubMed |

[153]  H.-J. Eom, J. Choi, p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in jurkat T cells. Environ. Sci. Technol. 2010, 44, 8337.
CrossRef | CAS | PubMed |

[154]  R. Zhang, M. J. Piao, K. C. Kim, A. D. Kim, J.-Y. Choi, J. Choi, J. W. Hyun, Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis. Int. J. Biochem. Cell B. 2012, 44, 224.
CrossRef | CAS |

[155]  J. Kim, M. Takahashi, T. Shimizu, T. Shirasawa, M. Kajita, A. Kanayama, Y. Miyamoto, Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mech. Ageing Dev. 2008, 129, 322.
CrossRef | CAS | PubMed |

[156]  Y. Sakaue, J. Kim, Y. Miyamoto, Effects of TAT-conjugated platinum nanoparticles on lifespan of mitochondrial electron transport complex I-deficient Caenorhabditis elegans, nuo-1. Int. J. Nanomed. 2010, 5, 687.
| CAS |

[157]  H. X. Yan, T. Kinjo, H. Z. Tian, T. Hamasaki, K. Teruya, S. Kabayama, S. Shirahata, Mechanism of the lifespan extension of Caenorhabditis elegans by electrolyzed reduced water-participation of Pt nanoparticles. Biosci. Biotechnol. Biochem. 2011, 75, 1295.
CrossRef | CAS |

[158]  Q. Rui, Y. Zhao, Q. Wu, M. Tang, D. Wang, Biosafety assessment of titanium dioxide nanoparticles in acutely exposed nematode Caenorhabditis elegans with mutations of genes required for oxidative stress or stress response. Chemosphere 2013, 93, 2289.
CrossRef | CAS | PubMed |

[159]  M. C. Arnold, A. R. Badireddy, M. R. Wiesner, R. T. Di Giulio, J. N. Meyer, Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. Arch. Environ. Contam. Toxicol. 2013, 65, 224.
CrossRef | CAS | PubMed |

[160]  S. Wu, J. H. Lu, Q. Rui, S. H. Yu, T. Cai, D. Y. Wang, Aluminum nanoparticle exposure in L1 larvae results in more severe lethality toxicity than in L4 larvae or young adults by strengthening the formation of stress response and intestinal lipofuscin accumulation in nematodes. Environ. Toxicol. Pharmacol. 2011, 31, 179.
CrossRef | CAS | PubMed |

[161]  Q. Wu, Y. Li, M. Tang, D. Wang, Evaluation of environmental safety concentrations of DMSA coated Fe2O3-NPs using different assay systems in nematode Caenorhabditis elegans. PLoS ONE 2012, 7, e43729.
CrossRef | CAS | PubMed |

[162]  P. R. Hunt, B. J. Marquis, K. M. Tyner, S. Conklin, N. Olejnik, B. C. Nelson, R. L. Sprando, Nanosilver suppresses growth and induces oxidative damage to DNA in Caenorhabditis elegans. Journal of applied toxicology. J. Appl. Toxicol. 2013, 33, 1131.
CrossRef | CAS | PubMed |

[163]  B. R. Daniels, B. C. Masi, D. Wirtz, Probing single-cell micromechanics in vivo: the microrheology of C. elegans developing embryos. Biophys. J. 2006, 90, 4712.
CrossRef | CAS | PubMed |

[164]  E. Zanni, G. De Bellis, M. P. Bracciale, A. Broggi, M. L. Santarelli, M. S. Sarto, C. Palleschi, D. Uccelletti, Graphite nanoplatelets and Caenorhabditis elegans: insights from an in vivo model. Nano Lett. 2012, 12, 2740.
CrossRef | CAS | PubMed |

[165]  P.-C. L. Hsu, M. O’Callaghan, N. Al-Salim, M. R. H. Hurst, Quantum dot nanoparticles affect the reproductive system of Caenorhabditis elegans. Environ. Toxicol. Chem. 2012, 31, 2366.
CrossRef | CAS |

[166]  E. Q. Contreras, M. Cho, H. Zhu, H. L. Puppala, G. Escalera, W. Zhong, V. L. Colvin, Toxicity of quantum dots and cadmium salt to Caenorhabditis elegans after multigenerational exposure. Environ. Sci. Technol. 2013, 47, 1148.
CrossRef | CAS | PubMed |

[167]  Q. L. Wu, W. Wang, Y. X. Li, Y. P. Li, B. P. Ye, M. Tang, D. Y. Wang, Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system. J. Hazard. Mater. 2012, 243, 161.
CrossRef | CAS |

[168]  Q. L. Wu, A. Nouara, Y. P. Li, M. Zhang, W. Wang, M. Tang, B. P. Ye, J. D. Ding, D. Y. Wang, Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans. Chemosphere 2013, 90, 1123.
CrossRef | CAS |

[169]  Y. Zhao, Q. Wu, M. Tang, D. Wang, The in vivo underlying mechanism for recovery response formation in nano-titanium dioxide exposed Caenorhabditis elegans after transfer to the normal condition. Nanomedicine 2014, 10, 89.
CrossRef | CAS | PubMed |

[170]  Y. X. Li, W. Wang, Q. L. Wu, Y. P. Li, M. Tang, B. P. Ye, D. Y. Wang, Molecular control of TiO2-NPs toxicity formation at predicted environmental relevant concentrations by Mn-SODs proteins. PLoS ONE 2012, 7, e44688.
CrossRef | CAS |

[171]  P. H. Chen, K. M. Hsiao, C. C. Chou, Molecular characterization of toxicity mechanism of single-walled carbon nanotubes. Biomaterials 2013, 34, 5661.
CrossRef | CAS | PubMed |

[172]  Q. Wu, Y. Li, Y. Li, Y. Zhao, L. Ge, H. Wang, D. Wang, Crucial role of the biological barrier at the primary targeted organs in controlling the translocation and toxicity of multi-walled carbon nanotubes in the nematode Caenorhabditis elegans. Nanoscale 2013, 5, 11 166.
CrossRef | CAS |

[173]  R. T. Minullina, Y. N. Osin, D. G. Ishmuchametova, R. F. Fakhrullin, Interfacing multicellular organisms with polyelectrolyte shells and nanoparticles: a Caenorhabtidis elegans study. Langmuir 2011, 27, 7708.
CrossRef | CAS | PubMed |

[174]  S. W. Kim, J. I. Kwak, Y.-J. An, Multigenerational study of gold nanoparticles in Caenorhabditis elegans: transgenerational effect of maternal exposure. Environ. Sci. Technol. 2013, 47, 5393.
CrossRef | CAS | PubMed |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014