CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Wildlife Research   
Wildlife Research
Journal Banner
  Ecology, Management and Conservation in Natural and Modified Habitats
blank image Search
blank image blank image
blank image
  Advanced Search

Journal Home
About the Journal
Editorial Structure
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Submit Article
Author Instructions
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter logo LinkedIn


Article << Previous     |     Next >>   Contents Vol 35(5)

Predicting habitat suitability for the endemic mountain nyala (Tragelaphus buxtoni) in Ethiopia

Paul H. Evangelista A B D, John Norman A, Lakew Berhanu C, Sunil Kumar A, Nathaniel Alley B

A Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO 80523-1499, USA.
B The Murulle Foundation, PO Box 1442, Fort Collins, CO 80522, USA.
C Ethiopian Wildlife Conservation Department, PO Box 386, Addis Ababa, Ethiopia.
D Corresponding author. Email: paulevan@nrel.colostate.edu
PDF (639 KB) $25
 Export Citation


The use of statistical models to predict species distributions and suitable habitat has become an essential tool for wildlife management and conservation planning. Models have been especially useful with rare and endangered wildlife species. One such species is the mountain nyala (Tragelaphus buxtoni), a spiral-horned antelope endemic to the Ethiopian highlands. The full range of the species has never been adequately defined and recent discoveries of new populations suggest that others may exist undetected. To identify potential mountain nyala occurrences, we used classification tree analysis to predict suitable habitat using 76 climatic, topographical and vegetative variables. Three model evaluation methods showed a strong performance of the final model with an overall accuracy of 90%, Cohen’s maximised κ of 0.80 and area under the receiver operating characteristic curve (AUC) value of 0.89. Minimum temperature and maximum precipitation generally had the greatest predictive contributions to suitable mountain nyala habitat. The predicted habitat covered an area of 39 378 km2, with the majority occurring in remote forests on the southern escarpment of the Bale Mountains. Other areas within the predicted range may be too impacted by human and livestock populations to support mountain nyala; however, the model will be useful in directing future surveys for new populations while offering clues to the species historical range.

Keywords: classification tree, ecological niche model, habitat suitability, WorldClim.

Subscriber Login

Legal & Privacy | Contact Us | Help


© CSIRO 1996-2015