Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Bat wing airfoil and planform structures relating to aerodynamic cleanliness

R. D. Bullen A C and N. L. McKenzie B
+ Author Affiliations
- Author Affiliations

A 43 Murray Drive, Hillarys, WA 6025, Australia.

B Department of Environment and Conservation, PO Box 51, Wanneroo, WA 6065, Australia.

C Corresponding author. Email: bullen2@bigpond.com

Australian Journal of Zoology 55(4) 237-247 https://doi.org/10.1071/ZO07010
Submitted: 11 February 2007  Accepted: 21 June 2007   Published: 24 September 2007

Abstract

In this paper we examine 12 species of Western Australian bat for anatomical and morphometric attributes related to wing lift and drag characteristics. We present values for bat wing camber (typically 6.5–9%) and its location, measurements of wing planform and tip shape (typically elliptical but with two different tip designs), dimensions of wing leading-edge flaps (typically 8–10.5% of hand wing chord but with some species having much larger flaps up to 18%) and then discuss several features related to airflow separation control.

All species assessed had thin, low-camber airfoil sections, an optimisation appropriate to the range of Reynolds Numbers in which bats fly. Wing relative cleanliness was consistent with, and functionally appropriate to, species foraging strategy. The interceptors had the point of maximum camber well forward and no trailing edge wing fences, optimisations for minimum drag generation. The air-superiority bats had leading-edge fences optimised for maximum lift generation while maintaining low drag. Surface bats were characterised by their low-aspect-ratio wingtips and the absence of optimisations for either low section drag or high lift. The frugivore and the carnivore appear to be discrete optimisations while the emballinurid had a long and broad leading edge flap in combination with a high-aspect-ratio tip.

We propose a range of lift and drag coefficient values for use in models of metabolic power output.


Acknowledgements

We thank C. L. Bullen and M. H. McKenzie for field assistance. The Western Australian Department of Environment and Conservation contributed to the cost of the project. J. McRae prepared the artwork of Fig. 4. We also thank three referees who provided critical reviews of an early version of this manuscript.


References

Abbott I. H., and von Doenhoff A. E. (1959). ‘Theory of Wing Sections.’ (Dover: New York.)

Belbin L. (1995). ‘PATN Technical Reference.’ (CSIRO Division of Wildlife and Ecology: Canberra.)

Bullen, R. D. , and McKenzie, N. L. (2001). Bat airframe design – flight performance, stability and control in relation to foraging ecology. Australian Journal of Zoology 49, 235–261.
Crossref | GoogleScholarGoogle Scholar | Chang P. K. (1976). ‘Control of Flow Separation.’ (McGraw-Hill: New York.)

Churchill S. (1998). ‘Australian Bats.’ (Reed New Holland: Sydney.)

Clark, K. R. , and Green, R. H. (1988). Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46, 213–226.
Crossref | GoogleScholarGoogle Scholar | Glauert H. (1926). ‘The Elements of Aerofoil and Airscrew Theory.’ (Cambridge University Press: London.)

Hoerner S. F. (1965). ‘Fluid-dynamic Drag.’ (Hoerner Fluid Dynamics: Brick Town, NJ.)

Hoerner S. F., and Borst H. V. (1975). ‘Fluid-dynamic Lift.’ (Hoerner Fluid Dynamics: Brick Town, NJ.)

Lazos, B. S. (2005). Biologically inspired fixed-wing configuration studies. Journal of Aircraft 42, 1089–1098.
Marchaj C. A. (1988). ‘Aero-hydrodynamics of Sailing.’ (Adlard Coles Nautical: London.)

McCracken, G. F. , and Westbrook, J. K. (2002). Bat patrol. Journal of the National Geographic Society 206, 114–123.
McKenzie N. L., and Rolfe J. K. (1995). Vertebrate fauna. In ‘The Biological Survey of the Eastern Goldfields of Western Australia’. Records of the Western Australian Museum Supplement No. 49, 31–65.

McKenzie N. L., and Start A. N. (1989). Structure of bat guilds in mangroves: disturbance and determinism. In ‘Patterns in the Structure of Mammalian Communities’. (Eds D. W. Morris, Z. Abramski, B. J. Fox and R. Willig.) pp. 167–178. (Texas Tech University Press: Lubbock, TX.)

McKenzie, N. L. , Gunnell, A. , Yani, M. , and Williams, M. (1995). Correspondence between flight morphology and foraging ecology in some Palaeotropical bats. Australian Journal of Zoology 43, 241–257.
Crossref | GoogleScholarGoogle Scholar | Newsom W. A., Satran D. R., and Johnson J. L. (1982). Effects of wing leading edge modifications on a full-scale, low-wing general aviation airplane. NASA Technical Paper No. 2011.

Norberg, U.M. , and Rayner, J.M.V. (1987). Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Zoological Society of London B 316, 335–427.
Crossref | GoogleScholarGoogle Scholar | Pearson A. (Ed.) (2007). Bats in flight may provide military inspiration. NewScientistTech www.newscientisttech.com/article.ns?id=dn11105

Pennycuick C. J. (1989). ‘Bird Flight Performance: A Practical Calculation Manual.’ (Oxford University Press: Oxford.)

Pennycuick, C. J. , Heine, C. E. , Kirkpatrick, S. J. , and Fuller, M. R. (1992). The profile drag of a hawk’s wing measured by wake sampling in a wind tunnel. Journal of Experimental Biology 165, 1–19.
Crossref | GoogleScholarGoogle Scholar | Schmitz F. W. (1942). ‘Aerodynamics Of The Model Airplane. Part 1. Airfoil Measurements.’ Translated at Redstone Scientific Information Center RSIC-721 (1967).

Simons M. (1999). ‘Model Aircraft Aerodynamics.’ (Nexus Special Interests: Hemel Hempstead, UK.)

Sneath P. H. A., and Sokal R. R. (1973). ‘Numerical Taxonomy. The Principals and Practice of Numerical Classification.’ (W.H. Freeman: San Francisco.)

Speakman J. R., and Thomas D. W. (2003). Physiological ecology and energetics of bats. In ‘Bat Ecology’. (Eds T. H. Kunz and M. B. Fenton.). (University of Chicago Press: Chicago.)

Strahan R. (ed.) (1995). ‘The Mammals of Australia.’ (Reed Books: Sydney.)

Tian, X. , Iriarte-Diaz, J. , Middleton, K. , Galvao, R. , Israeli, E. , Roemer, A. , Sullivan, A. , Song, A. , Swartz, S. , and Breuer, K. (2006). Direct measurements of the kinematics and dynamics of bat flight. Bioinspiration and Biomimetrics 1, S10–S18.
Crossref | GoogleScholarGoogle Scholar | Wilson D. E. (1997). ‘Bats in Question.’ (Smithsonian Institution Press: Washington, DC.)

Van Dam C. P. (1989). High angle-of-attack aerodynamic characteristics of crescent and elliptical wings. NASA-CR-184992.

Vesilind, P. J. (2002). Hotspots – The Philippines. Journal of the National Geographic Society 207(1),


Videler, J. J. , Stamhuis, E. J. , and Povel, G. D. E. (2004). Leading-edge vortex lift swifts. Science 306, 1960–1962.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zook, J. M. , and Fowler, B. C. (1982). Central representation of a specialised mechanoreceptor array in the wing of the bat. Neuroscience Abstracts 8, 38.