CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Zoology   
Australian Journal of Zoology
Journal Banner
  Evolutionary, Molecular and Comparative Zoology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Structure
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Author Instructions
Submit Article
Scope
Open Access
Awards and Prizes
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter LinkedIn

 

Article << Previous     |         Contents Vol 61(6)

Development of a multiplex panel of microsatellite markers for two species of gliding marsupials, Petaurus breviceps and Petaurus norfolcensis

M. Malekian A B C G, R. Y. Dudaniec D, K. M. Saint E, S. M. Carthew B F and S. J. B. Cooper B C E

A Department of Natural Resources, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
B School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
C Centre for Evolutionary Biology and Biodiversity, The University of Adelaide, Adelaide, SA 5005, Australia.
D Department of Biology, Lund University, Lund, SE-22362, Sweden.
E Evolutionary Biology Unit, South Australian Museum, Adelaide, SA 5000, Australia.
F Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia.
G Corresponding author. Email: mmalekian@cc.iut.ac.ir

Australian Journal of Zoology 61(6) 475-478 http://dx.doi.org/10.1071/ZO14002
Submitted: 28 January 2014  Accepted: 11 March 2014   Published: 3 April 2014


 
PDF (106 KB) $25
 Export Citation
 Print
  
Abstract

Here, we describe the development of seven new microsatellite loci from Petaurus breviceps. Together with eight loci from previous studies of gliders, we tested their utility for amplification, multiplexing and polymorphism in two glider species, P. breviceps and P. norfolcensis. Of the 15 loci tested, all were polymorphic in P. breviceps and 12 were polymorphic in P. norfolcensis. Overall, 260 sugar gliders from 13 sites in south-eastern South Australia and 106 squirrel gliders collected throughout south-east Queensland were used in analyses. Numbers of alleles per locus ranged from 4 to 27 in P. breviceps and from 2 to 44 in P. norfolcensis. Observed heterozygosity ranged between 0.438 and 0.904 in P. breviceps and between 0.189 and 0.981 in P. norfolcensis. Within the populations analysed, one of the 15 loci for P. breviceps and two of the 12 loci for P. norfolcensis deviated from Hardy–Weinberg equilibrium. The microsatellite loci will provide valuable tools for further study of social organisation, mating systems and population biology of these gliding marsupials.



Additional keywords: 454 sequencing, habitat fragmentation, microsatellites, population structure.


References

Brown, M., Kendal, T. A., Cooksley, H., Saint, K. M., Taylor, A. C., Carthew, S. M., and Cooper, S. J. B. (2004). Polymorphic microsatellite markers for the gliding marsupials Petaurus australis and Petaurus breviceps. Molecular Ecology Notes 4, 704–706.
CrossRef | CAS |

Carthew, S. M., and Goldingay, R. L. (1997). Non-flying mammals as pollinators. Trends in Ecology & Evolution 12, 104–108.
CrossRef | CAS |

Faircloth, B. C. (2008). msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Molecular Ecology Resources 8, 92–94.
CrossRef | CAS | PubMed |

Gardner, M. G., Fitch, A. J., Bertozzi, T., and Lowe, A. J. (2011). Rise of the machines – recommendations for ecologists when using next generation sequencing for microsatellite development. Molecular Ecology Resources 11, 1093–1101.
CrossRef | PubMed |

Goldingay, R. L., and Kavanagh, R. P. (1993). Home-range estimates and habitat of yellow-bellied glider (Petaurus australis) at Waratah Creek, New South Wales. Wildlife Research 20, 387–404.
CrossRef |

Goldingay, R., and Possingham, H. (1995). Area requirements for viable populations of the Australian gliding marsupial, Petaurus australis. Biological Conservation 73, 161–167.
CrossRef |

Hayden, M., Nguyen, T., Waterman, A., and Chalmers, K. (2008). Multiplex-ready PCR: A new method for multiplexed SSR and SNP genotyping. BMC Genomics 9, 80.
CrossRef | PubMed |

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65–70.

Jackson, S. M. (1999). Preliminary predictions of the impacts of habitat area and catastrophes on the viability of mahogany glider Petaurus gracilis populations. Pacific Conservation Biology 5, 56–62.

Kalinowski, S. T., Taper, M. L., and Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 1099–1106.
CrossRef | PubMed |

Malekian, M. (2007). Molecular systematics and conservation genetics of gliding petaurids (Marsupialia: Petauridae). Ph.D. thesis, The University of Adelaide.

Meglécz, E. (2007). MicroFamily: a computer program for detecting flanking region similarities among different microsatellite loci. Molecular Ecology Notes 7, 18–20.
CrossRef |

Millis, A. L. (2000). Isolation and characterization of microsatellite loci in marsupial gliders (Petaurus norfolcensis, P. breviceps and P. gracilis). Molecular Ecology 9, 1681–1683.
CrossRef | CAS | PubMed |

Pope, M. L., Lindenmayer, D. B., and Cunningham, R. B. (2004). Patch use by the greater glider (Petauroides volans) in a fragmented forest ecosystem. I. Home range size and movements. Wildlife Research 31, 559–568.
CrossRef |

Quin, D. G., Smith, A. P., and Norton, T. W. (1996). Eco-geographic variation in size and sexual dimorphism in sugar gliders and squirrel gliders (Marsupialia: Petauridae). Australian Journal of Zoology 44, 19–45.
CrossRef |

Raymond, M., and Rousset, F. (1995). GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.

Rozen, S., and Skaletsky, H. J. (2000). Primer3 on the WWW for general users and for biologist programmers. In ‘Bioinformatics Methods and Protocols: Methods in Molecular Biology’. (Eds S. Misener and S. A. Krawetz.) pp. 365–386. (Humana Press Inc.: Totowa, NJ.)

Smith, A. P. (1982). Diet and feeding strategy of the sugar glider in temperate Australia. Journal of Animal Ecology 51, 149–166.
CrossRef |

Taylor, A. C., Walker, F. M., Goldingay, R. L., Ball, T., and van der Ree, R. (2011). Degree of landscape fragmentation influences genetic isolation among populations of a gliding mammal. PLoS ONE 6, e26651.
CrossRef | CAS | PubMed |

van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology 4, 535–538.
CrossRef | CAS |


   
Subscriber Login
Username:
Password:  

 
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2015