CSIRO Publishing blank image blank image blank image blank imageBooksblank image blank image blank image blank imageJournalsblank image blank image blank image blank imageAbout Usblank image blank image blank image blank imageShopping Cartblank image blank image blank image You are here: Journals > Australian Journal of Zoology   
Australian Journal of Zoology
Journal Banner
  Evolutionary, Molecular and Comparative Zoology
 
blank image Search
 
blank image blank image
blank image
 
  Advanced Search
   

Journal Home
About the Journal
Editorial Board
Contacts
Content
Online Early
Current Issue
Just Accepted
All Issues
Special Issues
Sample Issue
For Authors
General Information
Notice to Authors
Submit Article
Open Access
For Referees
Referee Guidelines
Review an Article
Annual Referee Index
For Subscribers
Subscription Prices
Customer Service
Print Publication Dates

blue arrow e-Alerts
blank image
Subscribe to our Email Alert or RSS feeds for the latest journal papers.

red arrow Connect with us
blank image
facebook twitter youtube

red arrow Supplementary Series
blank image
All volumes of the Australian Journal of Zoology Supplementary Series are online and available to subscribers of Australian Journal of Zoology.

 

Article << Previous     |     Next >>   Contents Vol 46(5)

Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution

D. J. Colgan, A. McLauchlan, G. D. F. Wilson, S. P. Livingston, G. D. Edgecombe, J. Macaranas, G. Cassis and M. R. Gray

Australian Journal of Zoology 46(5) 419 - 437
Published: 1998

Abstract

The range of DNA sequences used to study the interrelationships of the major arthropod groups (chelicerates, myriapods, hexapods and crustaceans) is limited. Here we investigate the value of two genes not previously employed in arthropod phylogenetics. Histone H3 data were collected for 31 species and small nuclear ribonucleic acid U2 data for 29 species. The sequences provided a total of 460 sites and 192 parsimony-informative characters. H3 analyses showed substantial codon usage bias, but had a low consistency index (0.26). Consistency indices were higher for the U2 data (0.49), suggesting that the class of snRNAs may provide several phylogenetically useful genes.

The present data are not by themselves sufficient to clarify major arthropod group relationships. Partitioned data for H3 and U2 are incongruent according to Incongruence Length Difference tests. Although the most parsimonious trees, based on combined analyses of all taxa, differ substantially from morphology-based trees, anomalous groupings are weakly supported with only one exception. The trees uphold monophyly of Onychophora, Branchiopoda, and Malacostraca (rather than the rival Phyllopoda). Cladistic analyses constraining the monophyly of morphologically defined classes do not significantly distinguish between the main rival hypotheses of major clade relationships. Combined (‘spliced’) analysis of both genes improves topological congruence with morphological groupings relative to that of either partition. Character congruence between H3, U2, and morphology is increased by downweighting (but not excluding) transitions and third codons. Analyses of four-taxon statements using PHYLTEST found significant support for the basal position of the Crustacea among the euarthropods. This support may be due to the similarity of chelicerates, myriapods and hexapods in percentage GC content.



Full text doi:10.1071/ZO98048

© CSIRO 1998

blank image
Subscriber Login
Username:
Password:  

 
PDF (220 KB) $25
 Export Citation
 Print
  
    
Legal & Privacy | Contact Us | Help

CSIRO

© CSIRO 1996-2014