Sexual Health Sexual Health Society
Publishing on sexual health from the widest perspective
RESEARCH ARTICLE

A cost-effectiveness analysis of adding a human papillomavirus vaccine to the Australian National Cervical Cancer Screening Program

Shalini Kulasingam A J , Luke Connelly B , Elizabeth Conway C , Jane S. Hocking D , Evan Myers E , David G. Regan F , David Roder G , Jayne Ross H and Gerard Wain I
+ Author Affiliations
- Author Affiliations

A Duke University, Center for Clinical Health Policy Research, Durham, NC 27710, USA.

B The University of Queensland, Mayne Medical School, Herston, Qld 4006, Australia.

C CSL Limited, Parkville, Vic. 3052, Australia.

D The University of Melbourne, Parkville, Vic. 3010, Australia.

E Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA.

F National Centre in HIV Epidemiology and Clinical Research, The University of New South Wales, Darlinghurst, NSW 2010, Australia.

G Group Executive, Research and Information Science, The Cancer Council South Australia, Unley, SA 5061, Australia.

H Jayne Ross & Associates, Cheltenham, NSW 2118, Australia.

I Department of Gynaecological Oncology, Westmead Hospital, Westmead, NSW 2145, Australia.

J Corresponding author. Email: kulas002@mc.duke.edu

Sexual Health 4(3) 165-175 https://doi.org/10.1071/SH07043
Submitted: 19 June 2007  Accepted: 22 June 2007   Published: 23 August 2007

Abstract

Background: The cost-effectiveness of adding a human papillomavirus (HPV) vaccine to the Australian National Cervical Screening Program compared to screening alone was examined. Methods: A Markov model of the natural history of HPV infection that incorporates screening and vaccination was developed. A vaccine that prevents 100% of HPV 16/18-associated disease, with a lifetime duration of efficacy and 80% coverage offered through a school program to girls aged 12 years, in conjunction with current screening was compared with screening alone using cost (in Australian dollars) per life-year (LY) saved and quality-adjusted life-year (QALY) saved. Sensitivity analyses included determining the cost-effectiveness of offering a catch-up vaccination program to 14–26-year-olds and accounting for the benefits of herd immunity. Results: Vaccination with screening compared with screening alone was associated with an incremental cost-effectiveness ratio (ICER) of $51 103 per LY and $18 735 per QALY, assuming a cost per vaccine dose of $115. Results were sensitive to assumptions about the duration of vaccine efficacy, including the need for a booster ($68 158 per LY and $24 988 per QALY) to produce lifetime immunity. Accounting for herd immunity resulted in a more attractive ICER ($36 343 per LY and $13 316 per QALY) for girls only. The cost per LY of vaccinating boys and girls was $92 052 and the cost per QALY was $33 644. The cost per LY of implementing a catch-up vaccination program ranged from $45 652 ($16 727 per QALY) for extending vaccination to 14-year-olds to $78 702 ($34 536 per QALY) for 26-year-olds. Conclusions: These results suggest that adding an HPV vaccine to Australia’s current screening regimen is a potentially cost-effective way to reduce cervical cancer and the clinical interventions that are currently associated with its prevention via screening alone.


References


[1] Department of Health and Aging Australian Government. The National Cervical Screening Program. Facts and key statistics. 2007. Available from: http://www.cancerscreening.gov.au/internet/screening/publishing.nsf/Content/facts [accessed 8 June, 2007]

[2] Australian Institute of Health and Welfare (AIHW). Cervical screening in Australia 2002–3. Cancer Series No. 31, Canberra: AIHW; 2005.

[3] Report of the Evaluation Steering Committee. The interim evaluation of the organised approach to preventing cancer of the cervix 1991–95. Report No. 27. Canberra: Australian Government Publishing Service; 1995.

[4] Bosch FX,  Manos MM,  Munoz N,  Sherman M,  Jansen AM,  Peto J, et al. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) study group. J Natl Cancer Inst 1995; 87 796–802.
CrossRef | PubMed |

[5] Munoz N,  Bosch FX,  de Sanjose S,  Herrero R,  Castellsague X,  Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 2003; 348 518–27.
CrossRef | PubMed |

[6] Clifford GM,  Smith JS,  Plummer M,  Munoz N,  Franceschi S. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 2003; 88 63–73.
CrossRef | PubMed |

[7] Koutsky LA,  Ault KA,  Wheeler CM,  Brown DR,  Barr E,  Alvarez FB, et al. A controlled trial of a human papillomavirus type 16 vaccine. N Engl J Med 2002; 347 1645–51.
CrossRef | PubMed |

[8] Villa LL,  Costa RL,  Petta CA,  Andrade RP,  Ault KA,  Giuliano AR, et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol 2005; 6 271–8.
CrossRef | PubMed |

[9] Harper DM,  Franco EL,  Wheeler C,  Ferris DG,  Jenkins D,  Schuind A, et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 2004; 364 1757–65.
CrossRef | PubMed |

[10] Harper DM,  Franco EL,  Wheeler CM,  Moscicki AB,  Romanowski B,  Roteli-Martins CM, et al. Sustained efficacy up to 4.5 years of a bivalent L1 virus-like particle vaccine against human papillomavirus types 16 and 18: follow-up from a randomised control trial. Lancet 2006; 367 1247–55.
CrossRef | PubMed |

[11] Department of Health and Aging Australian Government. Australian Government funding of Gardasil. 2006. Available from: http://www.health.gov.au/internet/wcms/publishing.nsf/Content/4754B33584405E06CA2572220008CFA8/$File/Gardasilfunding-factsheet.pdf [accessed 8 June, 2007]

[12] Clifford GM,  Rana RK,  Franceschi S,  Smith JS,  Gough G,  Pimenta JM. Human papillomavirus genotype distribution in low-grade cervical lesions: comparison by geographic region and with cervical cancer. Cancer Epidemiol Biomarkers Prev 2005; 14 1157–64.
CrossRef | PubMed |

[13] Clifford GM,  Smith JS,  Aguado T,  Franceschi S. Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis. Br J Cancer 2003; 89 101–5.
CrossRef | PubMed |

[14] McCrory DC , Matchar DB , Bastian L , Datta S , Hasselblad V , Hickey J , et al Evaluation of cervical cytology. Evidence Report/Technology Assessment No. 5 (Prepared by Duke University under Contract No. 290–97–0014). AHCPR Publication No. 99–E010. Rockville, MD: Agency for Health Care Policy and Research; 1999.

[15] Myers ER,  McCrory DC,  Nanda K,  Bastian L,  Matchar DB. Mathematical model for the natural history of human papillomavirus infection and cervical carcinogenesis. Am J Epidemiol 2000; 151 1158–71.
PubMed |

[16] Schiffman M,  Kjaer SK. Chapter 2: Natural history of anogenital human papillomavirus infection and neoplasia. J Natl Cancer Inst Monogr 2003; 14–9.
PubMed |

[17] Sellors JW,  Karwalajtys TL,  Kaczorowski J,  Mahony JB,  Lytwyn A,  Chong S, et al. Incidence, clearance and predictors of human papillomavirus infection in women. CMAJ 2003; 168 421–5.
PubMed |

[18] Munoz N,  Mendez F,  Posso H,  Molano M,  van den Brule AJ,  Ronderos M, et al. Incidence, duration, and determinants of cervical human papillomavirus infection in a cohort of Colombian women with normal cytological results. J Infect Dis 2004; 190 2077–87.
CrossRef | PubMed |

[19] Jacobs MV,  Walboomers JM,  Snijders PJ,  Voorhorst FJ,  Verheijen RH,  Fransen-Daalmeijer N, et al. Distribution of 37 mucosotropic HPV types in women with cytologically normal cervical smears: the age-related patterns for high-risk and low-risk types. Int J Cancer 2000; 87 221–7.
CrossRef | PubMed |

[20] Peto J,  Gilham C,  Deacon J,  Taylor C,  Evans C,  Binns W, et al. Cervical HPV infection and neoplasia in a large population-based prospective study: the Manchester cohort. Br J Cancer 2004; 91 942–53.
PubMed |

[21] Schlecht NF,  Platt RW,  Duarte-Franco E,  Costa MC,  Sobrinho JP,  Prado JC, et al. Human papillomavirus infection and time to progression and regression of cervical intraepithelial neoplasia. J Natl Cancer Inst 2003; 95 1336–43.
PubMed |

[22] Hoyer H,  Scheungraber C,  Kuehne-Heid R,  Teller K,  Greinke C,  Leistritz S, et al. Cumulative 5-year diagnoses of CIN2, CIN3 or cervical cancer after concurrent high-risk HPV and cytology testing in a primary screening setting. Int J Cancer 2005; 116 136–43.
CrossRef | PubMed |

[23] Winer RL,  Kiviat NB,  Hughes JP,  Adam DE,  Lee SK,  Kuypers JM, et al. Development and duration of human papillomavirus lesions, after initial infection. J Infect Dis 2005; 191 731–8.
CrossRef | PubMed |

[24] Giuliano AR,  Harris R,  Sedjo RL,  Baldwin S,  Roe D,  Papenfuss MR, et al. Incidence, prevalence, and clearance of type-specific human papillomavirus infections: the Young Women’s Health Study. J Infect Dis 2002; 186 462–9.
CrossRef | PubMed |

[25] Yokoyama M,  Iwasaka T,  Nagata C,  Nozawa S,  Sekiya S,  Hirai Y, et al. Prognostic factors associated with the clinical outcome of cervical intraepithelial neoplasia: a cohort study in Japan. Cancer Lett 2003; 192 171–9.
CrossRef | PubMed |

[26] Sastre-Garau X,  Cartier I,  Jourdan-Da Silva N,  De Cremoux P,  Lepage V,  Charron D. Regression of low-grade cervical intraepithelial neoplasia in patients with HLA-DRB1*13 genotype. Obstet Gynecol 2004; 104 751–5.
PubMed |

[27] Kataja V,  Syrjanen K,  Mantyjarvi R,  Vayrynen M,  Syrjanen S,  Saarikoski S, et al. Prospective follow-up of cervical HPV infections: life table analysis of histopathological, cytological and colposcopic data. Eur J Epidemiol 1989; 5 1–7.
CrossRef | PubMed |

[28] Matsumoto K,  Yasugi T,  Oki A,  Fujii T,  Nagata C,  Sekiya S, et al. IgG antibodies to HPV16, 52, 58 and 6 L1-capsids and spontaneous regression of cervical intraepithelial neoplasia. Cancer Lett 2006; 231 309–13.
CrossRef | PubMed |

[29] De Aloysio D,  Miliffi L,  Iannicelli T,  Penacchioni P,  Bottiglioni F. Intramuscular interferon-beta treatment of cervical intraepithelial neoplasia II associated with human papillomavirus infection. Acta Obstet Gynecol Scand 1994; 73 420–4.
PubMed |

[30] Brestovac B,  Harnett GB,  Smith DW,  Shellam GR,  Frost FA. Human papillomavirus genotypes and their association with cervical neoplasia in a cohort of Western Australian women. J Med Virol 2005; 76 106–10.
CrossRef | PubMed |

[31] Chen S,  O’Sullivan H,  Tabrizi SN,  Fairley CK,  Quinn MA,  Garland SM. Prevalence and genotyping of HPV in cervical cancer among Australian women. Int J Gynaecol Obstet 1999; 67 163–8.
CrossRef | PubMed |

[32] Liu JH,  Huang X,  Liao GW,  Li JD,  Li YF,  Li MD, et al. [Human papillomavirus infection and other risk factors for cervical cancer in Chinese and Australian patients] Zhonghua Yi Xue Za Zhi 2003; 83 748–52.
PubMed |

[33] Stevens MP,  Tabrizi SN,  Quinn MA,  Garland SM. Human papillomavirus genotype prevalence in cervical biopsies from women diagnosed with cervical intraepithelial neoplasia or cervical cancer in Melbourne, Australia. Int J Gynecol Cancer 2006; 16 1017–24.
CrossRef | PubMed |

[34] Australian Institute of Health and Welfare (AIHW). General Record of Incidence of Mortality (GRIM) Books. 2005. Available from: http://www.aihw.gov.au/mortality/data/grim_books_national.cfm [accessed 8 June, 2007]

[35] Australian Institute of Health and Welfare (AIHW). Separation, patient day and average length of stay statistics by Australian Refined Diagnosis Related Group (AR-DRG) Version 5.0/5.1. Australia, 1998–99 to 2004–05. Canberra: AIHW; 2005.

[36] South Australian Cancer Registry. Epidemiology of cancer in South Australia. Incidence, mortality and survival 1977 to 1999. Incidence and mortality 1999. Adelaide: Openbook Publishers; 2000.

[37] Davy MLJ,  Dodd TJ,  Luke CJ,  Roder DM. Cervical cancer: effect of glandular cell type on prognosis, treatment, and survival. Obstet Gynecol 2003; 101 38–45.
CrossRef | PubMed |

[38] Cuzick J,  Clavel C,  Petry KU,  Meijer CJ,  Hoyer H,  Ratnam S, et al. Overview of the European and North American studies on HPV testing in primary cervical cancer screening. Int J Cancer 2006; 119 1095–101.
CrossRef | PubMed |

[39] Morrell S,  Mamoon H,  O’Callaghan J,  Taylor R,  Ross J,  Wain G. Early cervical cancer rescreening. J Med Screen 2002; 9 26–32.
CrossRef | PubMed |

[40] Medical Services Advisory Committee. Human papillomavirus testing in women with cytological prediction of low-grade abnormality: assessment report 12b. Canberra: MSAC; 2002

[41] National Health and Medical Research Council. National Cervical Screening Program. Screening to prevent cervical cancer: guidelines for the management of asymptomatic women with screen detected abnormalities. Canberra: NHMRC; 2005

[42] Gynaecological Oncology Study Group. Gynaecological oncology clinical practice guidelines. Sydney: GMTT; 2004.

[43] Blomfield P,  Davy M,  Hammond I,  Wain G. The new NH&MRC guidelines for management of abnormal Pap smears in asymptomatic Australian women. Obstet Gynecol 2005; 7 25–7.


[44] Skinner R,  Nolan T.. Adolescent hepatitis B immunisation – should it be the law? Aust NZ J Public Health 2001; 25 230–3.


[45] Villa LL,  Ault KA,  Giuliano AR,  Costa RL,  Petta CA,  Andrade RP, et al. Immunologic responses following administration of a vaccine targeting human papillomavirus types 6, 11, 16, and 18. Vaccine 2006; 24 5571–83.
CrossRef | PubMed |

[46] Regan DG,  Philip DJ,  Hocking JS,  Law MG. Modelling the population-level impact of vaccination on the transmission of human papillomavirus type 16 in Australia. Sex Health 2007; 4 147–63.
CrossRef |

[47] Medicare Australia. Australian Government. Medicare benefits schedule. 2006. Available from: http://www.medicareaustralia.gov.au/providers/health_statistics/statistical_reporting/medicare.htm [accessed 8 June, 2007]

[48] Department of Health and Aging Australian Government. Medicare statistics – March quarter 2006. Group B Tables – selected statistics by broad type of service. 2006. Available from: http://www.health.gov.au/internet/wcms/publishing.nsf/Content/medstat-mar06-analysis-b [accessed 8 June, 2007]

[49] Municipal Association of Victoria. Cost of Victorian local government immunisation services; Melbourne: MAV; 2004.

[50] Myers ER , Green S , Lipkus I . Patient preferences for health states related to HPV infection. Visual analog scales versus time trade-off elicitation. Proceedings of the 21st International Papillomavirus Conference, 2004 February 20–27; Mexico City, Mexico.

[51] Pharmaceutical Benefits Advisory Committee. Guidelines for preparing submissions to the Pharmaceutical Benefits Advisory Committee (PBAC). Version 41. Canberra: PBAC; 2006

[52] Goldie SJ,  Kohli M,  Grima D,  Weinstein MC,  Wright TC,  Bosch FX, et al. Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine. J Natl Cancer Inst 2004; 96 604–15.
PubMed |

[53] Kulasingam SL,  Myers ER. Potential health and economic impact of adding a human papillomavirus vaccine to screening programs. JAMA 2003; 290 781–9.
CrossRef | PubMed |

[54] Barnabas RV,  Laukkanen P,  Koskela P,  Kontula O,  Lehtinen M,  Garnett GP. Epidemiology of HPV 16 and cervical cancer in Finland and the potential impact of vaccination: mathematical modelling analyses. PLoS Med 2006; 3 e138.
CrossRef | PubMed |

[55] Lehtinen M,  Apter D,  Dubin G,  Kosunen E,  Isaksson R,  Korpivaara EL, et al. Enrolment of 22 000 adolescent women to cancer registry follow-up for long-term human papillomavirus vaccine efficacy: guarding against guessing. Int J STD AIDS 2006; 17 517–21.
CrossRef | PubMed |

[56] Pharmaceutical Benefits Scheme. Department of Health and Aging. Australian Government. Government funds Gardasil. 2006. Available from: http://www.pbs.gov.au/html/healthpro/news/article?id=NEWS-2006-11-29-Aust_Govt_Funds_Gardasil.xml [accessed 8 June 2007]

[57] National Institute for Clinical Excellence. Guide to the methods of technology appraisal. London: National Institute for Clinical Excellence; 2004.

[58] Gold MR , Siegel JE , Russell LB , Weinstein MC , eds. Cost-effectiveness in health and medicine. New York: Oxford University Press; 1996.

[59] Dasbach EJ,  Elbasha EH,  Insinga RP. Mathematical models for predicting the epidemiologic and economic impact of vaccination against human papillomavirus infection and disease. Epidemiol Rev 2006; 28 88–100.
CrossRef | PubMed |

[60] Elbasha EH,  Dasbach EJ,  Insinga RP. Model for assessing human papillomavirus vaccination strategies. Emerg Infect Dis 2007; 13 28–41.
PubMed |

[61] Taira AV,  Neukermans CP,  Sanders GD. Evaluating human papillomavirus vaccination programs. Emerg Infect Dis 2004; 10 1915–23.
PubMed |



Rent Article (via Deepdyve) Export Citation Cited By (63)