Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Body condition assessment and prediction of fasting endurance in wild rabbits (Oryctolagus cuniculus)

M. Boos A B , C. Thouzeau A , G. Delacour B , M. Artois C , S. Marchandeau D , P. Jean-Claude C and J.-P. Robin A E

A Centre d’Ecologie et Physiologie Energétiques, UPR 9010, Centre National de la Recherche Scientifique, associé à l’Université Louis Pasteur, affilié à l’INSERM, 23 rue Becquerel, 67087 Strasbourg Cedex 2, France.

B Office National de la Chasse et de la Faune Sauvage, Direction des Etudes et de la Recherche, BP 15, Gerstheim, 67154 Erstein Cedex, France.

C Ecole Nationale Vétérinaire de Lyon, 69280 Marcy l’Etoile, France.

D Office National de la Chasse et de la Faune Sauvage, Direction des Etudes et de la Recherche, 53 rue Russeil, 44000 Nantes, France.

E Corresponding author. Email: jean-patrice.robin@c-strasbourg.fr

Wildlife Research 32(1) 75-83 https://doi.org/10.1071/WR03112
Submitted: 2 December 2003  Accepted: 16 August 2004   Published: 25 February 2005

Abstract

In many species, reproductive success, resistance to food shortage and immune response to parasitism depend on body nutrient reserves. Thus, determining body fuels is important for studying the impact of the environment on animal fitness. As an alternative to the usual biochemical methods, we have defined models for estimating body composition in rabbits (Oryctolagus cuniculus). The accuracy of the indices obtained on a source group was tested on an independent group. The models were applicable regardless of age, sex or season. The intact body mass already accounted for 90% of the protein variability. The most accurate equation combining dry body mass and interscapular fat mass explained 99% of the protein variations. Intact body mass and the kidney fat index were poor estimators of lipid stores (r2 = 0.45) but 90% of the variation was explained by an equation combining the interscapular fat mass and the hind leg length. None of the predictive equations significantly over- or underestimated body reserves. The usefulness of the models was assessed by estimating fasting endurance during winter. Individual estimates, ranging from two to eight days, did not differ by more than 0.5 day from the fasting endurance obtained from actual mobilisable body nutrients. In such lean species (adiposity 2–4%), proteins may account for up to 40% of the available energy reserves and survival is likely to be linked to the continuous availability of food resources. These results stress the need to determine proteins and not only lipids to have a pertinent tool for the management of wild animal populations, particularly in lean species.


Acknowledgments

We are grateful to the agents of the Office National de la Chasse et de la Faune Sauvage (ONCFS) based in Alsace, who helped in collecting the animals. The study was supported by grants from ONCFS and the SAGIR network (ONCFS/French Agriculture Ministry joint venture) centralisation laboratory at the former CNEVA Nancy, currently AFSSA Nancy (Laboratoire d’études et de Recherche sur la Rage et la Pathologie des Animaux Sauvages). We thank A. Pape, who corrected the English.


References

Angerbjörn, A. (1986). Reproduction of mountain hares (Lepus timidus) in relation to density and physical condition. Journal of Zoology 208, 559–568.


Bailey, J. A. (1968). A weight–length relationship for evaluating physical condition of cottontails. Journal of Wildlife Management 32, 835–841.


Batcheler, C. L. , and Clarke, C. M. H. (1970). Note on kidney weights and the kidney fat index. New Zealand Journal of Science 13, 663–668.


Batzli, G. O. , and Esseks, E. (1992). Body fat as an indicator of nutritional condition for the brown lemming. Journal of Mammalogy 73, 431–439.


Bednekoff, P. A. , and Houston, A. I. (1994). Optimizing fat reserves over the entire winter: a dynamic model. Oikos 71, 408–415.


Belkhou, R. , Cherel, Y. , Heitz, A. , Robin, J.-P. , and Le Maho, Y. (1991). Energy contribution of proteins and lipids during prolonged fasting in the rat. Nutrition Research (New York, N.Y.) 11, 365–374.


Blem, C. R. (1990). Avian energy storage. Current Ornithology 7, 59–113.


Bois, C. , Crête, M. , Huot, J. , and Ouellet, J.-P. (1997). Prédiction de la composition corporelle post-mortem de cerfs de virginie (Odocoileus virginianus) à partir de mesures morphologiques et massiques. Canadian Journal of Zoology 75, 1790–1795.


Boos M. (2000). Modifications des réserves énergétiques corporelles chez le canard colvert (Anas platyrhynchos) et la bécasse des bois (Scolopax rusticola) au cours de leur hivernage: aspect fonctionnel lié à la biologie de ces espèces et aux conditions du milieu. Ph.D. Thesis, Strasbourg.

Boos, M. , Zorn, T. , Koch, A. , Le Maho, Y. , and Robin, J.-P. (2000). Determining body fuels of wintering mallards. Comptes Rendus de l’Académie des Sciences (Paris), Life Sciences 323, 183–193.


Boos, M. , Zorn, T. , Le Maho, Y. , Groscolas, R. , and Robin, J.-P. (2002). Sex differences in body composition of wintering mallard ducks (Anas platyrhynchos): possible implications for survival and reproductive performance. Bird Study 49, 212–218.


Brown, D. R. , Hellgren, E. C. , Abbott, M. , Ruthven, D. C. , and Bingham, R. L. (1995). Effects of dietary energy and protein restriction on nutritional indices of female white-tailed deer. Journal of Wildlife Management 59, 595–609.


Campbell, R. R. , and Leatherland, J. F. (1980). Estimating body protein and fat from water content in lesser snow geese. Journal of Wildlife Management 44, 438–446.


Chan-McLeod, A. C. A. , White, R. G. , and Russel, D. E. (1995). Body mass and composition indices for female barren-ground caribou. Journal of Wildlife Management 59, 278–291.


Cherel Y., and Groscolas R. (1999). Relationships between nutrient storage and nutrient utilisation in long-term fasting birds and mammals. In ‘Proceedings of the 22nd International Ornithological Congress, Durban, Johannesburg’. (Eds N. J. Adams and R. H. Slotow.) pp. 17–34. (BirdLife South Africa.)

Child, G. I. , and Marshall, S. C. (1970). A method of estimating carcass fat and fat-free weights in migrant birds from water content of specimens. Condor 72, 116–119.


Crête, M. , and Huot, J. (1993). Regulation of a large herd of migratory caribou: summer nutrition affects calf growth and body reserves of dams. Canadian Journal of Zoology 71, 2291–2296.


Daniel, P. M. , Pratt, O. E. , and Spargo, E. (1977). The metabolic homeostatic role of muscle and its function as a store of protein. Lancet 310, 446–448.
CrossRef |

Eisermann, K. , Meier, B. , Khaschei, M. , and Holst, D. V. (1993). Ethophysiological responses to overwinter food shortage in wild european rabbits. Physiology & Behavior 54, 973–980.
CrossRef | PubMed |

Folch, J. M. , Lees, M. , and Sloane-Stanley, G. H. (1957). A simple method for the isolation and the purification of total lipids from animal tissues. Journal of Biological Chemistry 226, 497–509.
PubMed |

Gessaman J. A. (1999). Evaluation of some nonlethal methods of estimating avian body fat and lean mass. In ‘Proceedings of the 22nd International Ornithological Congress, Durban, Johannesburg’. (Eds N. J. Adams and R. H. Slotow.) pp. 2–16. (BirdLife South Africa.)

Hayssen, V. , and Lacy, R. C. (1985). Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. Comparative Biochemistry and Physiology A – Molecular and Integrative Physiology 81, 741–754.
CrossRef |

Huot J. (1988). Review of methods for evaluating the physical condition of wild ungulates in northern environments. Centre d’études nordiques, Université Laval, Québec. Nordicana n° 50.

Huot, J. , Poulle, M.-L. , and Crête, M. (1995). Evaluation of several indices for assessment of coyote (Canis latrans) body composition. Canadian Journal of Zoology 73, 1620–1624.


Kirkpatrick R. L. (1980). Physiological indices in wildlife management. In ‘WiIdlife Management Technical Manual’. pp. 99–112.

Le Maho Y. (1989). Utilization of protein vs. lipid reserves in spontaneous fasting and hibernation. In ‘Living in the Cold’. (Eds A. Malan and B. Canguilhem.) pp. 147–152. (Libbey Eurotext Ltd.)

Pehrson, A. , and Lindlöf, B. (1984). Impact of winter nutrition on reproduction in captive mountain hares (Lepus timidus). Journal of Zoology 204, 201–209.


Perdeck, A. C. (1985). Methods of predicting fat reserves in the coot. Ardea 73, 139–146.


Rechav, Y. , and Hay, L. (1992). The effects of nutritional status of rabbits and sheep on their resistance to the ticks Rhipicephalus evertsi evertsi and R. appendiculatus. Experimental & Applied Acarology 15, 171–179.
CrossRef | PubMed |

Riney, T. (1955). Evaluating condition of free-ranging red deer (Cemus elaphus), with special reference to New Zealand. New Zealand Science Technology 36, 429–463.


Robin, J.-P. , Cherel, Y. , Girard, H. , Chaban, C. , and Le Maho, Y. (1988). Augmentation du rendement azoté et hyperphagie associée à la réalimentation après un jeûne prolongé chez l’oie domestique. Comptes Rendus de l’Académie des Sciences (Paris), Life Sciences 306, 375–379.


Robin J.-P. (1989). Modifications métaboliques et comportementales au cours du jeûne prolongé. Réalimentation après un jeûne prolongé. Ph.D. Thesis, Strasbourg.

Rogers, P. M. (1980). Reliability of epiphysial fusion as an indicator of age in rabbits. Mammalia 46, 267–269.


Scherrer B. (1984). ‘Biostatistiques.’ (Gaëtan Morin: Boucherville.)

Schmidt-Nielsen K. (1990). ‘Animal Physiology, Adaptation and Environment.’ 4th Edn. (Cambridge University Press: Cambridge.)

Soveri, T. , and Aarnio, M. (1983). Measuring the body condition of hares during the winter. Finnish Game Research 41, 21–28.


Speakman, J. (1997). Factors influencing the daily energy expenditure of small mammals. Proceedings of the Nutrition Society 56, 1119–1136.
PubMed |

Thomas, V. G. (1982). Energetic reserves of Hudson Bay willow ptarmigan during winter and spring. Canadian Journal of Zoology 60, 1618–1623.


Thomas, V. G. , and Popko, R. (1981). Fat and protein reserves of wintering and prebreeding rock ptarmigan from south Hudson Bay. Canadian Journal of Zoology 59, 1205–1211.


Thouzeau C. (1998). Métabolisme énergétique lors d’un jeûne au froid chez la chouette effraie (Tyto alba). Ph.D. Thesis, Lyon I.

Virgl, J. A. , and Messier, F. (1992). Seasonal variation in body composition and morphology of adult muskrats in central Saskatchewan, Canada. Journal of Zoology 228, 461–477.


Virgl, J. A. , and Messier, F. (1993). Evaluation of body size and body condition indices in muskrats. Journal of Wildlife Management 57, 854–860.


Warren, R. J. , and Kirkpatrick, R. L. (1978). Indices of nutritional status in cottontail rabbits fed controlled diets. Journal of Wildlife Management 42, 154–158.


Whittaker, M. E. , and Thomas, V. G. (1983). Seasonal levels of fat and protein reserves of snowshoe hares in Ontario. Canadian Journal of Zoology 61, 1339–1345.



Rent Article (via Deepdyve) Export Citation Cited By (3)