# Correcting wildlife counts using detection probabilities

Gary C. White Department of Fishery and Wildlife Biology, Colorado State University, Fort Collins, CO 80523, USA. Email: gwhite@cnr.colostate.edu

*Wildlife Research* 32(3) 211-216 http://dx.doi.org/10.1071/WR03123

Submitted: 22 December 2003 Accepted: 3 March 2005 Published: 22 June 2005

## Abstract

One of the most pervasive uses of indices of wildlife populations is uncorrected counts of animals. Two examples are the minimum number known alive from capture and release studies, and aerial surveys where the detection probability is not estimated from a sightability model, marked animals, or distance sampling. Both the mark–recapture and distance-sampling estimators are techniques to estimate the probability of detection of an individual animal (or cluster of animals), which is then used to correct a count of animals. However, often the number of animals in a survey is inadequate to compute an estimate of the detection probability and hence correct the count. Modern methods allow sophisticated modelling to estimate the detection probability, including incorporating covariates to provide additional information about the detection probability. Examples from both distance and mark–recapture sampling are presented to demonstrate the approach.

## References

Alho
J. M.
1990
Logistic regression in capture–recapture models.
Biometrics
46
623
635

Buckland S. T., Anderson D. R., Burnham K. P., and Laake J. L. (1993). ‘Distance Sampling: Estimating Abundance of Biological Populations.’ (Chapman and Hall: New York.)

Buckland
S. T.
Burnham
K. P.
Augustin
N. H.
1997
Model selection: an integral part of inference.
Biometrics
53
603
618

Buckland S. T., Anderson D. R., Burnham K. P., Laake J. L., Borchers D. L., and Thomas L. (2001). Introduction to Distance Sampling.’ (Oxford University Press: London.)

Burnham
K. P.
Anderson
D. R.
2001
Kullback–Leibler information theory as a basis for strong inference in ecological studies.
Wildlife Research
28
111
119
DOI
Burnham K. P., and Anderson D. R. (2002). ‘Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach.’ 2nd edn. (Springer-Verlag: New York.)
Burnham
K. P.
White
G. C.
Anderson
D. R.
1995
Model selection strategy in the analysis of capture–recapture data.
Biometrics
51
888
898

Carothers
A. D.
1979
Quantifying unequal catchability and its effect on survival estimates in an actual population.
Journal of Animal Ecology
48
863
869

Caughley
G.
Sinclair
R.
Scott-Kemmis
D.
1976
Experiments in aerial survey.
Journal of Wildlife Management
40
290
300

Eberhardt
L. L.
Garrott
R. A.
Becker
B. L.
1999
Using trend indices for endangered species.
Marine Mammal Science
15
766
785

Ganey J. L., Ackers S., Fonken P., Jenness J. S., Kessler C., Nodal K., Shaklee P., and Swarthout E. (1999). Monitoring populations of Mexican spotted owls in Arizona and New Mexico: 1999 Progress report. USDA Forest Service, Rocky Mountain Research Station, Flagstaff, Arizona, USA.

Ganey J. L., White G. C., Bowden D. C., and Franklin A. B. (2004). Evaluating methods for monitoring populations of Mexican spotted owls: a case study. In ‘Sampling Rare or Elusive Species: Concepts, Designs and Techniques for Estimating Population Parameters’. (Ed. W. L. Thompson.) pp. 337–385. (Island Press: Washington, DC.)

Huggins
R. M.
1989
On the statistical analysis of capture–recapture experiments.
Biometrika
76
133
140

Huggins
R. M.
1991
Some practical aspects of a conditional likelihood approach to capture experiments.
Biometrics
47
725
732

McKelvey
K. S.
Pearson
D. E.
2001
Population estimation with sparse data: the role of estimators versus indices revisited.
Canadian Journal of Zoology
79
1754
1765
DOI
Montgomery
W. I.
1987
The application of capture–mark–recapture methods to the enumeration of small mammal populations.
Symposia of the Zoological Society of London
58
25
57

Nichols
J. D.
1992
Capture–recapture models: using marked animals to study population dynamics.
Bioscience
42
94
102

Nichols
J. D.
Pollock
K. H.
1983
Estimation methodology in contemporary small mammal capture–recapture studies.
Journal of Mammalogy
64
253
260

Otis
D. L.
Burnham
K. P.
White
G. C.
Anderson
D. R.
1978
Statistical inference from capture data on closed animal populations.
Wildlife Monographs
62
1
135

Pledger
S.
2000
Unified maximum likelihood estimates for closed capture–recapture models using mixtures.
Biometrics
56
434
442
DOI
Samuel
M. D.
Garton
E. O.
Schlegel
M. W.
Carson
R. G.
1987
Visibility bias during aerial surveys of elk in north central Idaho.
Journal of Wildlife Management
51
622
630

Slade
N. A.
Blair
S. M.
2000
An empirical test of using counts of individuals captured as indices of population size.
Journal of Mammalogy
81
1035
1045
DOI
Stanley
T. R.
Burnham
K. P.
1998
a
Estimator selection for closed-population capture–recapture.
Journal of Agricultural Biological & Environmental Statistics
3
131
150

Stanley
T. R.
Burnham
K. P.
1998
b
Information-theoretic model selection and model averaging for closed-population capture–recapture studies.
Biometrical Journal
40
475
494
DOI
Thomas L., Laake J. L., Derry J. F., Buckland S. T., Borchers D. L., *et al.*(1998). Distance 3.5. Research Unit for Wildlife Population Assessment, University of St Andrews, UK. Available at http://www.ruwpa.st-and.ac.uk/distance/ [Verified 8 May 2005.]
White G. C. (2001). Statistical models: keys to understanding the natural world. In ’Modeling in Natural Resource Management’. (Eds T. M. Shenk and A. B. Franklin). pp. 35–56. (Island Press: Washington, DC.)
White
G. C.
Burnham
K. P.
1999
Program MARK: survival estimation from populations of marked animals.
Bird Study
46
120
138
Supplement

White G. C., Anderson D. R., Burnham K. P., and Otis D. L. (1982). Capture–recapture and removal methods for sampling closed populations. LA-8787-NERP, Los Alamos National Laboratory, Los Alamos, New Mexico, USA. 235 pp.

White G. C., Burnham K. P., and Anderson D. R. (2001). Advanced features of Program MARK. In ‘Wildlife, Land, and People: Priorities for the 21st Century. Proceedings of the Second International Wildlife Management Congress’. (Eds R. Field, R. J. Warren, H. Okarma, and P. R. Sievert.) pp. 368–377. (The Wildlife Society: Bethesda, MD.)