Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats

Improving the efficiency of wildlife monitoring by estimating detectability: a case study of foxes (Vulpes vulpes) on the Eyre Peninsula, South Australia

S. A. Field A B , A. J. Tyre C , K. H. Thorn D , P. J. O’Connor B E and H. P. Possingham A

A The Ecology Centre, University of Queensland, St Lucia, Qld 4072, Australia.

B School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

C School of Natural Resource Sciences, University of Nebraska, Lincoln, NE 68583-0819, USA.

D West Coast Integrated Pest Management Program, PO Box 60, Wudinna, SA 5652, Australia.

E Department of Water, Land and Biodiversity Conservation, GPO Box 2834, Adelaide, SA 5001, Australia.

Wildlife Research 32(3) 253-258 http://dx.doi.org/10.1071/WR05010
Submitted: 21 January 2005  Accepted: 3 May 2005   Published: 22 June 2005


Demonstrating the existence of trends in monitoring data is of increasing practical importance to conservation managers wishing to preserve threatened species or reduce the impact of pest species. However, the ability to do so can be compromised if the species in question has low detectability and the true occupancy level or abundance of the species is thus obscured. Zero-inflated models that explicitly model detectability improve the ability to make sound ecological inference in such situations. In this paper we apply an occupancy model including detectability to data from the initial stages of a fox-monitoring program on the Eyre Peninsula, South Australia. We find that detectability is extremely low (<18%) and varies according to season and the presence or absence of roadside vegetation. We show that simple methods of using monitoring data to inform management, such as plotting the raw data or performing logistic regression, fail to accurately diagnose either the status of the fox population or its trajectory over time. We use the results of the detectability model to consider how future monitoring could be redesigned to achieve efficiency gains. A wide range of monitoring programs could benefit from similar analyses, as part of an active adaptive approach to improving monitoring and management.


Anderson D. R. Burnham K. P. Thompson W. L. 2000 Null hypothesis testing: problems, prevalence, and an alternative. Journal of Wildlife Management 64 912 923

Australian National Audit Office (2001). Performance information for Commonwealth financial assistance under the Natural Heritage Trust. Australian National Audit Office, Canberra.

Australian Natural Resource Management Ministerial Council (2002). National natural resource management monitoring and evaluation framework.
http://www.nrm.gov.au/publications/evaluation/index.html [Accessed 6 January 2005.]

Bart J. Burnham K. P. Dunn E. H. Francis C. M. Ralph C. J. 2004 Goals and strategies for estimating trends in landbird abundance. Journal of Wildlife Management 68 611 626

Burnham K. P. Anderson D. R. 2001 Kullback–Leibler information as a basis for strong inference in ecological studies. Wildlife Research 28 111 119

Burnham K. P., and Anderson D. R. (2002). ‘Model Selection and Multimodel Inference: A Practical Information-theoretic Approach.’ (Springer-Verlag: New York.)

Dixon P. M. Olsen A. R. Kahn B. M. 1998 Measuring trends in ecological resources. Ecological Applications 8 225 227

Field S. A., Tyre A., Ball S. J., and Possingham H. P. (2001). Observer error and statistical power: evaluating survey reliability for conservation management. In ‘Modsim 2001: International Congress of Modelling and Simulation’. (Eds F. Ghassemi, P. Whetton, R. Little and M. Littleboy.) pp. 831–836. (MSSANZ: Canberra.)

Field S. A. Tyre A. J. Rhodes J. M. Jonzen N. Possingham H. P. 2004 Minimizing the cost of environmental management decisions by optimizing statistical thresholds. Ecology Letters 7 669 675

Field S. A. Tyre A. Possingham H. P. 2005 Optimizing allocation of monitoring effort under economic and observational constraints. Journal of Wildlife Management 69 473 482

Hall D. 2000 Zero-inflated Poisson and binomial regression with random effects: a case study. Biometrics 56 1030 1039

MacKenzie D. I. 2005 Was it there? Dealing with imperfect detection for species presence/absence data. Australian and New Zealand Journal of Statistics 47 65 74

MacKenzie D. I. Kendall W. 2002 How should detection probability be incorporated into estimates of relative abundance? Ecology 83 2387 2393

MacKenzie D. I. Royle J. A. 2005 Designing efficient occupancy studies: general advice and tips on allocation of survey effort. Journal of Applied Ecology 86 1101 1113

MacKenzie D. I. Nichols J. D. Lachman G. B. Droege S. Royle J. A. Langtimm C. A. 2002 Estimating site occupancy rates when detection probabilities are less than one. Ecology 83 2248 2255

MacKenzie D. I. Nichols J. D. Hines J. E. Knutson M. G. Franklin A. B. 2003 Estimating site occupancy, colonization and local extinction when a species is detected imperfectly. Ecology 84 2200 2207

MacKenzie D. I. Nichols J. D. Sutton N. Kawanishi K. Bailey L. L. 2005 Improving inferences in populations studies of rare species that are detected imperfectly. Ecology
in press

Olson G. M. Anthony R. G. Forsman E. D. Ackers S. H. Loschl P. J. Reid J. A. Dugger K. M. Glenn E. M. Ripple W. J. 2005 Modelling of site occupancy dynamics for northern spotted owls, with emphasis on the effects of barred owls. Journal of Wildlife Management
in press

Pollock K. H. Nichols J. D. Simons T. R. Farnsworth G. L. Bailey L. L. Sauer J. R. 2002 Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13 105 119

Royle J. A. Nichols J. D. 2003 Estimating abundance from repeated presence–absence data or point counts. Ecology 84 777 790

Saunders G., Coman B., Kinnear J., and Braysher M. (1995). ‘Managing Vertebrate Pests: Foxes.’ (Australian Government Publishing Service: Canberra.)

Shea K. Possingham H. P. Murdoch W. W. Roush R. 2002 Active adaptive management in insect pest and weed control: intervention with a plan for learning. Ecological Applications 12 927 936

Tyre A. J. Tenhumberg B. Field S. A. Niejalke D. Parris K. Possingham H. P. 2003 Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecological Applications 13 1790 1801

Venables W. N., Smith D., and The R Development Core Team  (1999–2001). ‘R: A Programming Environment for Data Analysis and Graphics. 1.8.’

Wintle B. A. McCarthy M. A. Parris K. P. Burgman M. A. 2004 Precision and bias of methods for estimating point survey detection probabilities. Ecological Applications 14 703 712

Wintle B. A. Kavanagh R. McCarthy M. A. Burgman M. A. 2005 Estimating and dealing with detectability in occupancy surveys for forest owls and arboreal marsupials. Journal of Wildlife Management
in press

Export Citation Cited By (24)