Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

The toad ahead: challenges of modelling the range and spread of an invasive species

Benjamin L. Phillips A D , Joseph D. Chipperfield B and Michael R. Kearney C

A School of Biological Sciences A08, University of Sydney, NSW 2006, Australia.

B UKPopNet, Department of Biology, University of York, North Yorkshire, YO10 5YW, United Kingdom.

C Department of Zoology, University of Melbourne, Vic. 3010, Australia.

D Corresponding author. Email: bphi4487@mail.usyd.edu.au

Wildlife Research 35(3) 222-234 http://dx.doi.org/10.1071/WR07101
Submitted: 25 July 2007  Accepted: 24 December 2007   Published: 20 May 2008

Abstract

An ability to predict the rate at which an organism spreads its range is of growing importance because the process of spread (during invasion by an exotic species) is almost identical to that occurring at the expanding range margins of a native species undergoing range shifts in response to climate change. Thus, the methods used for modelling range spread can also be employed to assess the distributional implications of climate change. Here we review the history of research on the spread of cane toads in Australia and use this case study to broadly examine the benefits and pitfalls of various modelling approaches. We show that the problems of estimating the current range, predicting the future range, and predicting the spread rate are interconnected and inform each other. Generally, we argue that correlative approaches to range-prediction are unsuitable when applied to invasive species and suggest that mechanistic methods are beginning to look promising (despite being more difficult to execute), although robust comparisons of correlative versus mechanistic predictions are lacking. Looking to the future, we argue that mechanistic models of range advance (drawing from both population ecology and environmental variation) are the approaches most likely to yield robust predictions. The complexity of these approaches coupled with the steady rise in computing power means that they have only recently become computationally tractable. Thus, we suggest that the field is only recently in a position to incorporate the complexity necessary to robustly model the rate at which species shift their range.


References

Araujo M. B. Pearson R. G. Thuiller W. Erhard M. 2005 Validation of species–climate impact models under climate change. Global Change Biology 11 1504 1513 DOI

Arim M. Abades S. R. Neill P. E. Lima M. Marquet P. 2006 Spread dynamics of invasive species. Proceedings of the National Academy of Sciences of the United States of America 103 374 378 DOI

Aumann C. A. 2007 A methodology for developing simulation models of complex systems. Ecological Modelling 202 385 396 DOI

Austin M. P. 2007 Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200 1 19 DOI

Austin M. P. Cunningham R. B. Fleming P. M. 1984 New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio 55 11 27 DOI

Bahn V. McGill B. J. 2007 Can niche-based distribution models outperform spatial interpolation? Global Ecology and Biogeography 16 733 742 DOI

Bahn V. O’Connor R. J. Krohn W. B. 2006 Importance of spatial autocorrelation in modelling bird distributions on a continental scale. Ecography 29 835 844 DOI

Bart J. 1995 Acceptance criteria for using individual-based models to make management decisions. Ecological Applications 5 411 420 DOI

Beaumont M. A. Zhang W. Balding D. J. 2002 Approximate Bayesian computation in population genetics. Genetics 162 2025 2035

Borchers D., Buckland S. T., and Zucchini W. (2002). ‘Estimating Animal Abundance.’ (Springer: London.)

Broennimann O. Treier U. A. Muller-Scharer H. Thuiller W. Peterson A. T. Guisan A. 2007 Evidence of climatic niche shift during biological invasion. Ecology Letters 10 701 709
DOI

Brooker R. W. Travis J. M. J. Clark E. J. Dytham C. 2007 Modelling species’ range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change. Journal of Theoretical Biology 245 59 65 DOI

Buckland S. T. Newman K. B. Thomas L. Koesters N. B. 2004 State–space models for the dynamics of wild animal populations. Ecological Modelling 171 157 175 DOI

Buckland S. T. Newman K. B. Fernandez C. Thomas L. Harwood J. 2007 Embedding population dynamic models in inference. Statistical Science 22 44 58 DOI

Burgman M. A. Fox J. C. 2003 Bias in species range estimates from minimum convex polygons: implications for conservation and options for improved planning. Animal Conservation 6 19 28 DOI

Busby J. R. (1991). BIOCLIM – A bioclimate analysis and prediction system. In ‘Nature Conservation: Cost Effective Biological Surveys and Data Analysis’. (Eds C. R. Margules and M. P. Austin.) pp. 64–68. (CSIRO: Melbourne.)

Campbell G. S., and Norman J. M. (1998). ‘Environmental Biophysics.’ (Springer: New York.)

Carpenter G. Gillison A. N. Winter J. 1993 DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodiversity and Conservation 2 667 680 DOI

Caswell H. Lensink R. Neubert M. G. 2003 Demography and dispersal: life table response experiments for invasion speed. Ecology 84 1968 1978 DOI

Clark J. S. 1998 Why trees migrate so fast: confronting theory with dispersal biology and the paleorecord. American Naturalist 152 204 224 DOI

Clark J. S. Fastie C. Hurtt G. Jackson S. T. Johnson C. et al. 1998 Reid’s paradox of rapid plant migration. Bioscience 48 13 24 DOI

Crozier L. Dwyer G. 2006 Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts. American Naturalist 167 853 866 DOI

DeAngelis D. L. Mooij W. M. 2005 Individual-based modelling of ecological and evolutionary processes. Annual Review of Ecology, Evolution and Systematics 36 147 168 DOI

Dormann C. F. 2007 Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography 16 129 138 DOI

Elith J., and Burgman M. A. (2003). Habitat models for population viability analysis. In ‘Population Viability in Plants: Conservation, Management and Modeling of Rare Plants’. (Eds C. A. Brigham and M. W. Schwartz.) pp. 203–235. (Springer-Verlag: Berlin.)

Elith J. Graham C. H. Anderson R. P. Dudik M. Ferrier S. et al. 2006 Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29 129 151 DOI

Elton C. S. (1958). ‘The Ecology of Invasions by Animals and Plants.’ (Methuen: London.)

Estoup A. Beaumont M. Sennedot F. Moritz C. Cornuet J.-M. 2004 Genetic analysis of complex demographic scenarios: spatially expanding populations of the cane toad, Bufo marinus. Evolution 58 2021 2036 DOI

Fieberg J. 2007 Kernel density estimators of home range: smoothing and the autocorrelation red herring. Ecology 88 1059 1066 DOI

Fisher R. A. 1937 The wave advance of advantageous genes. Annals of Eugenics 7 355 369

Floyd R. B. 1983 Ontogenetic change in temperature tolerance of larval Bufo marinus (Anura: Bufonidae). Comparative Biochemistry and Physiology 75A 267 271


Floyd R. B., Boughton W. C., Easteal S., Sabath M. D., and van Beurden E. K. (1981). The distribution records of the marine toad (Bufo marinus). 1. Australia. Griffith University, Brisbane.

Fortin M.-J. Keitt T. H. Maurer B. A. Taper M. L. Kaufman D. M. Blackburn T. M. 2005 Species’ geographic ranges and distributional limits: pattern analysis and statistical issues. Oikos 108 7 17
DOI

Freeland W. J. Martin K. C. 1985 The rate of range expansion by Bufo marinus in northern Australia 1980–84. Australian Wildlife Research 12 555 560 DOI

Friedman J. H. Hastie T. Tibshirani R. 2000 Additive logistic regression: a statistical view of boosting. The Annals of Statistics 28 337 407 DOI

Gaston K. J. (2003). ‘The Structure and Dynamics of Geographic Ranges.’ (Oxford University Press: Oxford.)

Gaston K. J. Quinn R. M. Wood S. Arnold H. R. 1996 Measures of geographic range size: the effects of sample size. Ecography 19 259 268 DOI

Gates D. M. (1980). ‘Biophysical Ecology.’ (Springer Verlag: New York.)

Goss-Custard J. Burton N. H. K. Clark N. A. Ferns P. N. McGrorty S. et al. 2006 Test of a behaviour-based individual-based model: response of shorebird mortality to habitat loss. Ecological Applications 16 2215 2222 DOI

Grimm V., and Railsback S. F. (2005). ‘Individual-based Modeling and Ecology.’ (Princeton University Press: Oxford.)

Grimm V. Berger U. Bastiansen F. Eliassen S. Ginot V. et al. 2006 A standard protocol for describing individual-based and agent-based models. Ecological Modelling 198 115 126 DOI

Guisan A. Zimmermann N. E. 2000 Predictive habitat distribution models in ecology. Ecological Modelling 135 147 186 DOI

Guisan A. Lehmann A. Ferrier S. Austin M. Overton J. M. C. Aspinall R. Hastie T. 2006 Making better biogeographical predictions of species’ distributions. Journal of Applied Ecology 43 386 392 DOI

Harrison P. A. Buckland S. T. Thomas L. Harris R. Pomeroy P. P. Harwood J. 2006 Incorporating movement into models of grey seal population dynamics. Journal of Animal Ecology 75 634 645 DOI

Hastings A. 1996 Models of spatial spread: a synthesis. Biological Conservation 78 143 148 DOI

Hastings A. Cuddington K. Davies K. F. Dugaw C. J. Elmendorf S. et al. 2005 The spatial spread of invasions: new developments in theory and evidence. Ecology Letters 8 91 101 DOI

Havel J. E. Shurin J. B. Jones J. R. 2002 Estimating dispersal from patterns of spread: spatial and local control of lake invasions. Ecology 83 3306 3318

Hemson G. Johnson P. South A. Kenward R. Ripley R. Macdonald D. 2005 Are kernels the mustard? Data from global positioning system (GPS) collars suggests problems for kernel home-range analyses with least-squares cross-validation. Journal of Animal Ecology 74 455 463


Hengeveld R. (1989). ‘Dynamics of Biological Invasions.’ (Chapman and Hall: New York.)

Hickling R. Roy D. B. Hill J. K. Thomas C. D. 2005 A northward shift of range margins in British Odonata. Global Change Biology 11 502 506
DOI

Hodkinson I. D. Bird J. M. 2006 Flexible responses of insects to changing environmental temperature – early season development of Craspedolepta species on fireweed. Global Change Biology 12 1308 1314 DOI

Holt R. D., Barfield M., and Gomulkiewicz R. (2006). Theories of niche conservatism and evolution. Could exotic species be potential tests? In ‘Species Invasions: Insights into Ecology, Evolution, and Biogeography’. (Eds D. F. Sax, J. J. Stachowicz and S. D. Gaines.) (Sinauer Associates: Sunderland, MA.)

Hooten M. B. Wikle C. K. Dorazio R. M. Royle J. A. 2007 Hierarchical spatio-temporal matrix models for characterizing invasions. Biometrics 63 558 567 DOI

Hulme P. E. 2003 Biological invasions: winning the science battles but losing the conservation war? Oryx 37 178 193 DOI

Huston M. D. DeAngelis D. L. Post W. 1988 New computer models unify ecological theory. Bioscience 38 682 691 DOI

Johnson D. M. Liebhold A. M. Tobin P. C. Bjornstad O. N. 2006 Allee effects and pulsed invasion by the gypsy moth. Nature 444 361 363 DOI

Kearney M. 2006 Habitat, environment and niche: what are we modelling? Oikos 115 186 191

Kearney M. Porter W. P. 2004 Mapping the fundamental niche: physiology, climate, and the distribution of a nocturnal lizard. Ecology 85 3119 3131
DOI

Kearney M. R. Phillips B. L. Tracy C. R. Christian K. A. Betts G. Porter W. P. in press Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography

Keitt T. H. Bjornstad O. N. Dixon P. M. Citron-Pousty S. 2002 Accounting for spatial pattern when modeling organism–environment interactions. Ecography 25 616 625
DOI

Kot M. Lewis M. A., vandenDriessche P. 1996 Dispersal data and the spread of invading organisms. Ecology 77 2027 2042 DOI

Lampo M. Deleo G. A. 1998 The invasion ecology of the toad Bufo marinus – from South America to Australia. Ecological Applications 8 388 396

Liebhold A. M. Halverson J. A. Elmes G. A. 1992 Gypsy moth invasion in North America: a quantitative analysis. Journal of Biogeography 19 513 520
DOI

Lonsdale W. M. 1993 Rates of spread of an invading species: Mimosa pigra in northern Australia. Australian Journal of Ecology 81 513 521

McCarthy M. A. (2007). ‘Bayesian Methods for Ecology.’ (Cambridge University Press: Cambridge.)

Meynard C. N. Quinn J. F. 2007 Predicting species distributions: a critical comparison of the most common statistical models using artificial species. Journal of Biogeography 34 1455 1469
DOI

Nathan R. Perry G. Cronin J. T. Strand A. E. Cain M. L. 2003 Methods for estimating long-distance dispersal. Oikos 103 261 273 DOI

Natori Y. Porter W. P. 2007 Japanese serow (Capricornis crispus) energetics landscape modelling predicts distribution on Honshu, Japan. Ecological Applications 17 1441 1459 DOI

Nehrbass N. Winkler E. 2007 Is the giant hogweed still a threat? An individual based modelling approach for local invasion dynamics of Heracleum mantegazzianum. Ecological Modelling 201 377 384 DOI

Neubert M. G. Caswell H. 2000 Demography and dispersal: calculation and sensitivity analysis of invasion speed for structured populations. Ecology 81 1613 1628

Nix H. A. (1986). biogeographic analysis of the Australian elapid snakes. In ‘Atlas of Elapid Snakes’. (Ed. R. Longmore.) pp. 4–15. (Australian Government Publishing Service: Canberra.)

O’Rourke J. (1998). ‘Computational Geometry in C.’ (Cambridge University Press: Cambridge.)

Parmesan C. 2006 Ecological and evolutionary responses to recent climate change. Annual Review of Ecology and Systematics 37 637 669
DOI

Parmesan C. Yohe G. 2003 A globally coherent fingerprint of climate change impacts across natural systems. Nature 421 37 42 DOI

Parmesan C. Gaines S. Gonzalez L. Kaufman D. M. Kingsolver J. Peterson A. T. Sagarin R. 2005 Empirical perspectives on species borders: from traditional biogeography to global change. Oikos 108 58 75 DOI

Parry H. Evans A. J. Morgan D. 2006 Aphid population dynamics in agricultural landscapes: an agent-based simulation model. Ecological Modelling 199 451 463 DOI

Pearson R. G. 2006 Climate change and the migration capacity of species. Trends in Ecology & Evolution 21 111 113 DOI

Pearson R. G. Dawson T. P. 2003 Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography 12 361 371 DOI

Peterson A. T. Ortega-Huerta M. A. Bartley J. Sanchez-Cordero V. Soberon J. Buddemeier R. H. Stockwell D. R. B. 2002 Future projections for Mexican faunas under global climate change scenarios. Nature 416 626 629 DOI

Phillips B. L. Shine R. 2004 Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proceedings of the National Academy of Sciences of the United States of America 101 17150 17155 DOI

Phillips B. L. Brown G. P. Webb J. K. Shine R. 2006 Invasion and the evolution of speed in toads. Nature 439 803 DOI

Phillips B. L. Brown G. P. Greenlees M. Webb J. K. Shine R. 2007 Rapid expansion of the cane toad (Bufo marinus) invasion front in tropical Australia. Austral Ecology 32 169 176 DOI

Phillips B. L. Brown G. P. Travis J. M. J. Shine R. 2008 Reid’s paradox revisited: the evolution of dispersal in range-shifting populations. The American Naturalist in press

Porter W. P. Gates D. M. 1969 Thermodynamic equilibria of animals with environment. Ecological Monographs 39 227 244
DOI

Porter W. P. Mitchell J. W. Beckman W. A. DeWitt C. B. 1973 Behavioural implications of mechanistic ecology – thermal and behavioral modeling of desert ectotherms and their microenvironment. Oecologia 13 1 54 DOI

Porter W. P. Sabo J. L. Tracy C. R. Reichman O. J. Ramankutty N. 2002 Physiology on a landscape scale: plant–animal interactions. Integrative and Comparative Biology 42 431 453 DOI

Porter W. P. Vakharia N. P. Klousie W. D. Duffy D. 2006 Po’ouli landscape bioinformatics models predict energetics, behavior, diets and distribution on Maui. Integrative and Comparative Biology 46 1143 1158 DOI

Randin C. F. Dirnbock T. Dullinger S. Zimmermann N. E. Zappa M. Guisan A. 2006 Are niche-based species distribution models transferable in space? Journal of Biogeography 33 1689 1703 DOI

Sabath M. D. Boughton W. C. Easteal S. 1981 Expansion of the range of the introduced toad Bufo marinus in Australia 1935–1974. Copeia 1981 676 680 DOI

Sagarin R. D. Gaines S. D. Gaylord B. 2006 Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends in Ecology & Evolution 21 524 530 DOI

Schiegg K. Walters J. R. Priddy J. A. 2005 Testing a spatially explicit, individual-based model of red-cockaded woodpecker population dynamics. Ecological Applications 15 1495 1503 DOI

Schwarzkopf L. Alford R. A. 2002 Nomadic movement in tropical toads. Oikos 96 492 506 DOI

Seaman D. E. Powell R. A. 1996 An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77 2075 2085 DOI

Sharov A. A. Liebhold A. M. Roberts E. A. 1996 Spatial variation among counts of gypsy moths (Lepidoptera: Lymantriidae) in pheremone-baited traps at expanding population fronts. Environmental Entomology 25 1312 1320

Shigesada N., and Kawasaki K. (1997). ‘Biological Invasions: Theory and Practice.’ (Oxford University Press: Oxford.)

Simberloff D. 2003 How much information on population biology is needed to manage introduced species? Conservation Biology 17 83 92
DOI

Sisson S. Fon Y. Tanaka M. 2007 Sequential Monte Carlo without likelihoods. Proceedings of the National Academy of Sciences of the United States of America 104 1760 1765 DOI

Skellam J. G. 1951 Random dispersal in theoretical populations. Biometrika 38 196 218

Starrfelt J. Kokko H. 2008 Are the speeds of species invasions regulated? The importance of null models. Oikos 117 370 375
DOI

Stuart L. C. 1951 The distributional implications of temperature tolerances and hemoglobin values in the toads Bufo marinus (Linnaeus) and Bufo bocourti brocchi. Copeia 1951 220 229 DOI

Sutherst R. W. Floyd R. B. Maywald G. F. 1996 The potential geographical distribution of the cane toad, Bufo marinus L. in Australia. Conservation Biology 10 294 299 DOI

Sutherst R. W. Maywald G. F. 1985 A computerised system for matching climates in ecology. Agriculture Ecosystems & Environment 13 281 299 DOI

Taylor C. M. Hastings A. 2005 Allee effects in biological invasions. Ecology Letters 8 895 908 DOI

Taylor C. M. Davis H. G. Civille J. C. Grevstad F. S. Hastings A. 2004 Consequences of an Allee effect in the invasion of a Pacific estuary by Spartina alterniflora. Ecology 85 3254 3266 DOI

Thomas C. D. Cameron A. Green R. E. Bakkenes M. Beaumont L. J. et al. 2004 Extinction risk from climate change. Nature 427 145 148 DOI

Thomas L. Buckland S. T. Newman K. B. Harwood J. 2005 A unified framework for modelling wildlife population dynamics. Australian and New Zealand Journal of Statistics 47 19 34 DOI

Thuiller W. 2004 Patterns and uncertainties of species’ range shifts under climate change. Global Change Biology 10 2020 2027 DOI

Tobin P. C. Liebhold A. M. Roberts E. A. 2007 a Comparison of methods for estimating the spread of a non-indigenous species. Journal of Biogeography 34 305 312 DOI

Tobin P. C. Whitmire S. L. Johnson D. M. Bjornstad O. N. Liebhold A. M. 2007 b Invasion speed is affected by geographical variation in the strength of Allee effects. Ecology Letters 10 36 43 DOI

Travis J. M. J. Brooker R. W. Dytham C. 2005 The interplay of positive and negative species interactions across an environmental gradient: insights from an individual-based simulation model. Biology Letters 1 5 8 DOI

Travis J. M. J. Brooker R. W. Clark E. J. Dytham C. 2006 The distribution of positive and negative species interactions across environmental gradients on a dual-lattice model. Journal of Theoretical Biology 241 896 902

Tsoar A. Allouche O. Steinitz O. Rotem D. Kadmon R. 2007 A comparative evaluation of presence-only methods for modelling species distribution. Diversity & Distributions 13 397 405


Uchmański J. Grimm V. 1996 Individual-based modelling in ecology: what makes the difference? Trends in Ecology & Evolution 11 437 441
DOI

Urban M. C. Phillips B. L. Skelly D. K. Shine R. 2007 The cane toad’s (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proceedings of the Royal Society of London. Series B. Biological Sciences 274 1413 1419 DOI

Urban M. C. Phillips B. L. Skelly D. K. Shine R. 2008 A toad more travelled: the heterogeneous invasion dynamics of cane toads in Australia. The American Naturalist in press

van Beurden E. K. 1981 Bioclimatic limits to the spread of Bufo marinus in Australia: a baseline. Proceedings of the Ecological Society of Australia 11 143 149


van Horne B. 1983 Density as a misleadng indicator of habitat quality. Journal of Wildlife Management 47 893 901
DOI

Veit R. R. Lewis M. A. 1996 Dispersal, population growth and the Allee effect: dynamics of the house finch invasion of eastern North America. American Naturalist 148 255 274 DOI

Walters R. J. Hassall M. Telfer M. G. Hewitt G. M. Palutikof J. P. 2006 Modelling dispersal of a temperate insect in a changing climate. Proceedings of the Royal Society B-Biological Sciences 273 2017 2023 DOI

Wiegand T. Jeltsch F. Hanski I. Grimm V. 2003 Using pattern-oriented modeling for revealing hidden information: a key for reconciling ecological theory and application. Oikos 100 209 222 DOI

Williamson M. (1996). ‘Biological Invasions.’ (Chapman and Hall: London.)

Worton B. J. 1995 Using Monte Carlo simulation to evaluate kernel-based home range estimators. Journal of Wildlife Management 59 794 800 DOI

Yamamura K. Moriya S. Tanaka K. Shimizu T. 2007 Estimation of the potential speed of range expansion of an introduced species: characteristics and applicability of the gamma model. Population Ecology 49 51 62 DOI



Export Citation