Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Application of decision theory to conservation management: recovery of Hector’s dolphin

Michael J. Conroy A E , Richard J. Barker B , Peter W. Dillingham B , David Fletcher B , Andrew M. Gormley B C and Ian M. Westbrooke D
+ Author Affliations
- Author Affliations

A USGS Georgia Cooperative Fish and Wildlife Research Unit, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.

B Department of Mathematics and Statistics, University of Otago, PO Box 56, Dunedin 9010, New Zealand.

C Department of Zoology, University of Otago, PO Box 56, Dunedin 9010, New Zealand.

D Department of Conservation, PO Box 13049, Christchurch, New Zealand.

E Corresponding author. Email: mconroy@uga.edu

Wildlife Research 35(2) 93-102 https://doi.org/10.1071/WR07147
Submitted: 18 September 2007  Accepted: 29 February 2008   Published: 21 April 2008

Abstract

Decision theory provides an organised approach to decision making in natural resource conservation. The theory requires clearly stated objectives, decision alternatives and decision-outcome utilities, and thus allows for the separation of values (conservation and other societal objectives) from beliefs. Models express belief in the likely response of the system to conservation actions, and can range from simple, graphical representations to complex computer models. Models can be used to make predictions about likely decision-outcomes, and hence guide decision making. Decision making must account for uncertainty, which can be reduced but never eliminated. Uncertainty can be described via probabilities, which in turn can be used to compute the expected value of alternative decisions, averaging over all relevant sources of uncertainty. Reduction of uncertainty, where possible, improves decision making. Adaptive management involves the reduction of uncertainty via prediction under two or more alternative, structural models, comparison of model predictions to monitoring, and feedback via Bayes’ Theorem into revising model weights, which in turn influences decision making. As part of a 3-day workshop on structured decision making (SDM) and adaptive resource management (ARM), we constructed a prototypical decision model for the recovery for Hector’s dolphin (Cephalorynchus hectori), an endangered dolphin endemic to New Zealand coastal waters. Our model captures several steps in the process of building an SDM/ARM framework, and should be useful for managers wishing to apply these principles to dolphin conservation or other resources problems.


Acknowledgements

This work was initiated while MJC was a visiting Evans Fellow at the University of Otago, and he gratefully acknowledges the support of that fund, and of the Department of Mathematics and Statistics, University of Otago. We thank Susan Waugh for help in organising the workshop and for contributions to the discussion on Hector’s dolphins. We thank Mark Maunder and Jim Peterson for helpful comments on previous drafts. The Georgia Cooperative Fish and Wildlife Research Unit is jointly sponsored by USGS, the University of Georgia, Georgia Department of Natural Resources, US Fish and Wildlife Service, and the Wildlife Management Institute.


References

Baker, A. (1978). The status of Hector’s dolphin Cephalorhyncus hectori (van Beneden) in New Zealand. Reports of the International Whaling Commission 28, 331–334.


Berger J. O. (1980). ‘Statistical Decision Theory.’ (Springer: New York.)

Breen, P. A. , Hilborn, R. , Maunder, M. N. , and Kim, S. W. (2003). Effects of alternative control rules on the conflict between a fishery and a threatened sea lion (Phocarctos hookeri). Canadian Journal of Fisheries and Aquatic Sciences 60, 527–541.
CrossRef |

Burkhart, S. M. , and Slooten, E. (2003). Population viability analysis for Hector’s dolphin (Cephalorhynchus hectori): a stochastic population model for local populations. New Zealand Journal of Marine and Freshwater Research 37, 553–566.


Burnham K. P., and Anderson D. R. (2002). ‘Model Selection and Multimodel Inference.’( Springer-Verlag: New York.)

Cameron, C. , Barker, R. J. , Fletcher, D. , Slooten, E. , and Dawson, S. (1999). Modelling survival of Hector’s dolphins around Banks Peninsula, New Zealand. Journal of Agricultural Biological & Environmental Statistics 4, 126–135.
CrossRef |

Clemen R. T. (1996). ‘Making Hard Decisions.’ (Duxbury: Belmont, CA.)

Conroy M. J., Miller M. W., and Hines J. E. (2002). Identification and synthetic modeling of factors affecting American black duck populations. Wildlife Monographs 150.

Dawson, S. M. , and Slooten, E. (1993). Conservation of Hector’s dolphins: the case and process which led to establishment of the Banks Peninsula marine mammal sanctuary. Aquatic Conservation 3, 207–221.
CrossRef |

Dorazio, R. M. , and Johnson, F. A. (2003). Bayesian inference and decision theory – a framework for decision making in natural resource management. Ecological Applications 13, 556–563.
CrossRef |

Fletcher, D. , Dawson, S. , and Slooten, E. (2002). Designing a mark–recapture study to allow for local emigration. Journal of Agricultural Biological & Environmental Statistics 7, 586–593.
CrossRef |

Goldberg D. E. (1989). ‘Genetic Algorithms in Search, Optimization, and Machine Learning.’ (Addison Wesley Longman: Reading, MA.)

Gormley, A. M. , Dawson, S. M. , Slooten, E. , and Bräger, S. (2005). Capture–recapture estimates of Hector’s dolphin abundance at Banks Peninsula, New Zealand. Marine Mammal Science 21, 204–216.
CrossRef |

Johnson, F. A. , and Williams, B. K. (1999). Protocol and practice in the adaptive management of waterfowl harvests. Conservation Ecology 3(1), 8.


Johnson, F. A. , Kendall, W. L. , and Dubovsky, J. A. (2002). Conditions and limitations on learning in the adaptive management of mallard harvests. Wildlife Society Bulletin 30, 176–185.


Klinowska M. (1991). ‘Dolphins, Porpoises and Whales of the World: the IUCN Red Data Book.’ (IUCN: Gland, Switzerland.)

Lindley D. V. (1985). ‘Making Decisions.’ (Wiley: London.)

Ludwig, D. , Hilborn, R. , and Walters, C. (1993). Uncertainty, resource exploitation, and conservation: lessons from history. Science 260, 17–36.
CrossRef | PubMed |

Marcot, B. G. , Holthausen, R. S. , Raphael, M. G. , Rowland, M. M. , and Wisdom, M. J. (2001). Using Bayesian belief networks to evaluate fish and wildlife population viability under land management alternatives from an environmental impact statement. Forest Ecology and Management 153, 29–42.
CrossRef |

Martin, T. G. , Kuhnert, P. M. , Mengersen, K. , and Possingham, H. P. (2005). The power of expert opinion in ecological models using Bayesian methods: impacts of grazing on birds. Ecological Applications 15, 266–280.
CrossRef |

Maunder, M. N. , Starr, P. J. , and Hilborn, R. (2000). A Bayesian analysis to estimate loss in squid catch due to the implementation of a sea lion population management plan. Marine Mammal Science 16, 413–426.
CrossRef |

McCarthy, M. A. , Keith, D. , Tietjen, J. , Burgman, M. A. , and Maunder, M. N. , et al. (2004). Comparing predictions of extinction risk using models and subjective judgment. Acta Oecologica 26, 67–74.
CrossRef |

McLain, R. J. , and Lee, R. G. (1996). Adaptive management: promises and pitfalls. Environmental Management 20, 437–448.
CrossRef | PubMed |

Moore, C. T. , and Conroy, M. J. (2006). Optimal regeneration planning for old-growth forest: addressing scientific uncertainty in endangered species recovery through adaptive management. Forest Science 52, 155–172.


Nichols, J. D. , and Williams, B. K. (2006). Monitoring for conservation. Trends in Ecology & Evolution 21, 668–673.
CrossRef |

Possingham H. P. (1997). State-dependent decision analysis for conservation biology. In ‘The Ecological Basis of Conservation: Heterogeneity, Ecosystems, and Biodiversity’. (Eds S. T. A. Pickett, R. S. Ostfeld, M. Shachak and G. E. Likens.) pp. 298–304. (Chapman and Hall: New York.)

Regan, H. M. , Ben-Haim, Y. , Langford, B. , Wilson, W. G. , Lundberg, P. , Andelman, S. J. , and Burgman, M. A. (2005). Robust decision making under severe uncertainty for conservation decision making. Ecological Applications 15, 1471–1477.
CrossRef |

Slooten E., and Dawson S. M. (1994). Hector’s dolphin. In ‘Handbook of Marine Mammals. Vol. V: Delphinidae and Phocoenidae’. (Eds S. Ridgway and R. Harrison.) pp. 311–333. (Academic Press: New York.)

Slooten, E. , Dawson, S. M. , and Lad, F. (1992). Survival rates of photographically identified Hector’s dolphins from 1984 to 1988. Marine Mammal Science 8, 327–343.
CrossRef |

Slooten, E. , Fletcher, D. , and Taylor, B. L. (2000). Accounting for uncertainty in risk assessment: case study of Hector’s dolphin mortality due to gillnet entanglement. Conservation Biology 14, 1264–1270.
CrossRef |

Slooten, E. , Dawson, S. M. , and Rayment, W. J. (2004). Aerial survey for coastal dolphins: abundance of Hector’s dolphins off the South Island West Coast, New Zealand. Marine Mammal Science 20, 477–490.
CrossRef |

Walters C. (1986). ‘Adaptive Management of Renewable Resources.’ (MacMillan: New York.)

Williams B. K., Nichols J. D., and Conroy M. J. (2002). ‘Analysis and Management of Animal Populations.’ (Elsevier-Academic: San Diego, CA.)



Rent Article (via Deepdyve) Export Citation Cited By (20)