Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

A comparison of the effectiveness of camera trapping and live trapping for sampling terrestrial small-mammal communities

Natasha De Bondi A , John G. White A C , Mike Stevens A B and Raylene Cooke A

A School of Life and Environmental Sciences, Deakin University, 221 Burwood Highway, Burwood, Vic. 3125, Australia.

B Grampians National Park, Parks Victoria, PO Box 18, Halls Gap, Vic. 3381, Australia.

C Corresponding author. Email: john.white@deakin.edu.au

Wildlife Research 37(6) 456-465 https://doi.org/10.1071/WR10046
Submitted: 8 March 2010  Accepted: 23 August 2010   Published: 18 October 2010

Abstract

Context. There is an increasing reliance on the use of camera-trap technologies for surveys of medium to large terrestrial mammals. Camera trapping may, however, also have significant applications for broad-scale surveys of small mammals.

Aims. The present study aims to compare results from camera-trapping surveys to those of the more traditional live-trapping techniques. Specifically, it aims to test the effectiveness of the techniques for detecting species, and the cost effectiveness of both approaches.

Methods. Surveys were conducted across 36 sites in the Grampians National Park, Victoria, Australia, between April and July 2009. At each site, independent surveys were conducted for small mammals by using a combination of Elliot and cage trapping, then camera trapping. Results for the two different approaches were compared for both their ability to generate small-mammal presence data and their cost effectiveness.

Key results. Camera-trapping surveys of 36 sites in the Grampians National Park compared favourably with those of live-trapping surveys. Similar species were detected across the sites, and camera trapping was a considerably more cost effective than live trapping.

Conclusions. Camera-trapping surveys of small terrestrial mammals may provide a new and cost-effective technique for surveying terrestrial small mammals. This is particularly the case when presence data are the main requirement of the survey, with no requirement to capture and tag animals.

Implications. Given the cost-effective nature of camera trapping, there is potential to use this approach to increase the level of replication and spatial coverage of small-mammal surveys. Improving the replication and spatial coverage of studies has the potential to significantly increase the scope of research questions that can be asked, thus providing the potential to improve wildlife management.

Additional keywords: camera trapping, cost effectiveness, small mammal, survey methods, trapping.


Acknowledgments

First, we acknowledge the traditional owners, past and present, of the Grampians–Gariwerd land. This project would not have been possible without generous funding from the Parks Victoria Research Partners Panel. We also thank Parks Victoria West region for supplying equipment, vehicles and accommodation for the duration of field sampling. We thank Luke Kelly and Dale Nimmo for providing statistical advice. Thanks go to all the Conservation Volunteers Australia, Victoria National Parks Association participants and Deakin University volunteers for their enthusiastic assistance with field sampling, rain or shine, animals or no animals. Finally, thanks go to Desley Whisson for introducing us to cameras, and for working out that masking tape can significantly reduce the flash strength of the cameras. This modification made it possible to use cameras for this application.


References

Barea-Azcón, J. M. , Virgos, E. , Ballesteros-Duperon, E. , Moleon, M. , and Chirosa, M. (2007). Surveying carnivores at large spatial scales: a comparison of four broad-applied methods. Biodiversity and Conservation 16, 1213–1230.
CrossRef |

Cayley R. A. , and Taylor D. H. (1997). Grampians special map area geological report. Geological Survey of Victoria Report 107. Crown State of Victoria, Melbourne.

Cowardin, L. M. (1969). Use of flooded timber by waterfowl at Montezuma national wildlife refuge. The Journal of Wildlife Management 33, 829–842.
CrossRef |

Cutler, T. L. , and Swann, D. E. (1999). Using remote photography in wildlife ecology: a review. Wildlife Society Bulletin 27, 571–581.


Foster, M. L. , and Humphrey, S. R. (1995). Use of highway underpasses by Florida panthers and other wildlife. Wildlife Society Bulletin 23, 95–100.


Garden, J. G. , McAlpine, C. A. , Possingham, H. P. , and Jones, D. N. (2007). Using multiple survey methods to detect terrestrial reptiles and mammals: what are the most successful and cost-efficient combinations? Wildlife Research 34, 218–227.


Gonzalez-Esteban, J. , Villate, I. , and Irizar, I. (2004). Assessing camera traps for surveying the european mink, Mustela lutreola (Linnaeus, 1761), distribution. European Journal of Wildlife Research 50, 33–36.
CrossRef |

Hamm, K. A. , Diller, L. V. , and Kitchen, D. W. (2002). Comparison of indices to estimate abundance of dusky-footed woodrats. Wildlife Society Bulletin 30, 64–70.


Hines J. E. (2006). PRESENCE2 – Software to estimate patch occupancy and related parameters. USGS-PWRC. Available at http://www.mbr-pwrc.usgs.gov/software/presence.html [accessed June 2010].

Hourigan, C. L. , Catterall, C. P. , Jones, D. , and Rhodes, M. (2008). A comparison of the effectiveness of bat detectors and harp traps for surveying bats in an urban landscape. Wildlife Research 35, 768–774.
CrossRef |

Jones C. , McShea W. J. , Conroy M. J. , and Kunz T. H. (1996). Capturing mammals. In ‘Measuring and Monitoring Biological Diversity: Standard Methods for Mammals’. (Eds D. E. Wilson, F. R. Cole, J. D. Nichols, R. Rudran and M. S. Foster.) pp. 115–155. (Smithsonian Institution Press: Washington, DC.)

Karanth, K. U. , and Nichols, J. D. (1998). Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79, 2852–2862.
CrossRef |

Kelly, M. J. (2008). Design, evaluate, refine: camera trap studies for elusive species. Animal Conservation 11, 182–184.
CrossRef |

Kelly, M. J. , and Holub, E. L. (2008). Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on salt pond mountain, Giles County, Virginia. Northeastern Naturalist 15, 249–262.
CrossRef |

Kelly, M. J. , Noss, A. J. , Di Bitetti, M. S. , Maffei, L. , Arispe, R. L. , Paviolo, A. , De Angelo, C. D. , and Di Blanco, Y. E. (2008). Estimating puma densities from camera trapping across three study sites: Bolivia, Argentina and Belize. Journal of Mammalogy 89, 408–418.
CrossRef |

Kelt, D. A. (1996). Ecology of small mammals across a strong environmental gradient in southern South America. Journal of Mammalogy 77, 205–219.
CrossRef |

Kéry, M. (2002). Inferring the absence of a species – a case study of snakes. The Journal of Wildlife Management 66, 330–338.
CrossRef |

King, C. M. , McDonald, R. M. , Martin, R. D. , Tempero, G. W. , and Holmes, S. J. (2007). Long-term automated monitoring of the distribution of small carnivores. Wildlife Research 34, 140–148.
CrossRef |

Koerth, B. H. , McKown, C. D. , and Kroll, J. C. (1997). Infrared triggered camera versus helicopter counts of white-tailed deer. Wildlife Society Bulletin 25, 557–562.


Krebs C. J. (1999). ‘Ecological Methodology.’ 2nd edn. (Benjamin/Cummings: Menlo Park, CA.)

Larrucea, E. S. , and Brussard, P. F. (2008). Habitat selection and current distribution of the pygmy rabbit in Nevada and California, USA. Journal of Mammalogy 89, 691–699.
CrossRef |

Lyra-Jorge, M. C. , Ciocheti, G. , Pivello, V. R. , and Meirelles, S. T. (2008). Comparing methods for sampling large- and medium-sized mammals: camera traps and track plots. European Journal of Wildlife Research 54, 739–744.
CrossRef |

MacKenzie, D. I. , Nichols, J. D. , Lachman, G. B. , Droege, S. , Royle, J. A. , and Langtim, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
CrossRef |

Maffei, L. , Noss, A. J. , Cuéllar, E. , and Rumiz, D. I. (2005). Ocelot (Felis pardalis) population densities, activity and ranging behaviour in the dry forests of eastern Bolivia: data from camera trapping. Journal of Tropical Ecology 21, 349–353.
CrossRef |

McKelvey, K. S. , and Pearson, D. E. (2001). Population estimation with sparse data: the role of estimators versus indices revisited. Canadian Journal of Zoology 79, 1754–1765.
CrossRef |

Moruzzi, T. L. , Fuller, T. K. , Degraaf, R. M. , Brooks, R. T. , and Li, W. J. (2002). Assessing remotely triggered cameras for surveying carnivore distribution. Wildlife Society Bulletin 30, 380–386.


Nichols, J. D. , and Pollock, K. H. (1983). Estimation methodology in contemporary small mammal capture-recapture studies. Journal of Mammalogy 64, 253–260.
CrossRef |

O’Brien, T. G. , Kinnaird, M. F. , and Wibisono, H. T. (2003). Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation 6, 131–139.
CrossRef |

Parks Victoria (2003). ‘Grampians National Park Management Plan.’ pp. 3–4. (Parks Victoria: Melbourne.)

Peterson, L. M. , and Thomas, J. A. (1998). Performance of trailmaster infrared sensors in monitoring captive coyotes. Wildlife Society Bulletin 26, 592–596.


Pollock, K. H. , Nichols, J. D. , Simons, T. R. , Farnsworth, G. L. , Bailey, L. L. , and Sauer, J. R. (2002). Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13, 105–119.
CrossRef |

Read, D. G. (1988). Weather and trap response of the dasyurid marsupials Sminthopsis-crassicaudata, Planigale-gilesi and Planigale-tenuirostris. Australian Wildlife Research 15, 139–148.
CrossRef |

Rowcliffe, J. , Field, J. , Turvey, S. T. , and Carbone, C. (2008). Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology 45, 1228–1236.
CrossRef |

Sadlier, L. M. J. , Webbon, C. C. , Baker, P. J. , and Harris, S. (2004). Methods of monitoring red foxes Vulpes vulpes and badgers Meles meles: are field signs the answer? Mammal Review 34, 75–98.
CrossRef |

Silveira, L. , Jacomo, A. T. A. , and Diniz, J. A. F. (2003). Camera trap, line transect census and track surveys: a comparative evaluation. Biological Conservation 114, 351–355.
CrossRef |

Stanley, T. R. , and Royle, J. A. (2005). Estimating site occupancy and abundance using indirect detection indices. The Journal of Wildlife Management 69, 874–883.
CrossRef |

Sweitzer, R. A. , Van Vuren, D. , Gardner, I. A. , Boyce, W. M. , and Waithman, J. D. (2000). Estimating sizes of wild pig populations in the north and central coast regions of California. The Journal of Wildlife Management 64, 531–543.
CrossRef |

Tasker, E. M. , and Dickman, C. R. (2002). A review of elliott trapping methods for small mammals in Australia. Australian Mammalogy 23, 77–87.


Thompson, G. G. , and Thompson, S. A. (2007). Usefulness of funnel traps in catching small reptiles and mammals, with comments on the effectiveness of the alternatives. Wildlife Research 34, 491–497.
CrossRef |

Trolle, M. , and Kery, M. (2003). Estimation of ocelot density in the Pantanal using capture–recapture analysis of camera-trapping data. Journal of Mammalogy 84, 607–614.
CrossRef |

Trolle, M. , Noss, A. J. , Lima, E. D. S. , and Dalponte, J. C. (2007). Camera-trap studies of maned wolf density in the cerrado and the pantanal of Brazil. Biodiversity and Conservation 16, 1197–1204.
CrossRef |

Trolle, M. , Noss, A. J. , Cordeiro, J. L. P. , and Oliveira, L. F. B. (2008). Brazilian tapir density in the pantanal: a comparison of systematic camera-trapping and line-transect surveys. Biotropica 40, 211–217.
CrossRef |

Van Dyck S. , and Strahan R. (Eds) (2008). ‘The Mammals of Australia.’ 3rd edn. (Reed New Holland: Sydney.)

Vernes, K. , and Haydon, D. T. (2001). Effect of fire on northern bettong (Bettongia tropica) foraging behaviour. Austral Ecology 26, 649–659.
CrossRef |

Vine, S. J. , Crowther, M. S. , Lapidge, S. J. , Dickman, C. R. , Mooney, N. , Piggot, M. P. , and English, A. W. (2009). Comparison of methods to detect rare and cryptic species: a case study using the red fox (Vulpes vulpes). Wildlife Research 36, 436–446.
CrossRef |

Watkins, A. F. , McWhirter, J. L. , and King, C. M. (2010). Variable detectability in long-term population surveys of small mammals. European Journal of Wildlife Research 56, 261–274.
CrossRef |

Whisson, D. A. , Engeman, R. M. , and Collins, K. (2005). Developing relative abundance techniques (RATs) for monitoring rodent populations. Wildlife Research 32, 239–244.
CrossRef |

Wiewel, A. S. , Clark, W. R. , and Sovada, M. A. (2007). Assessing small mammal abundance with track-tube indices and mark-recapture population estimates. Journal of Mammalogy 88, 250–260.
CrossRef |

Yates, F. (1934). Contingency tables involving small numbers and the χ2 test. Supplement to the Journal of the Royal Statistical Society 1, 217–235.
CrossRef |



Rent Article (via Deepdyve) Export Citation Cited By (52)