Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology

Thermal regimes and diel activity patterns of four species of small elapid snakes from south-eastern Australia

John Llewelyn A , Richard Shine A B and Jonathan K. Webb A
+ Author Affiliations
- Author Affiliations

A Biological Sciences A08, University of Sydney, NSW 2006, Australia.

B Corresponding author. Email:

Australian Journal of Zoology 53(1) 1-8
Submitted: 14 May 2004  Accepted: 14 January 2004   Published: 24 February 2005


Two of the most basic biological attributes for any ectothermic animal are the times of day that it is active and the body temperatures that it exhibits. Published studies on reptile biology display a heavy bias towards diurnal lizards from Northern Hemisphere habitats. To help redress this imbalance, we quantified thermal regimes and activity times in four species of small Australian elapid snakes. Mean selected body temperature in a thermal gradient was affected by the time of testing (i.e. night v. day), with snakes choosing higher body temperatures at night than by day. In outdoor enclosures, whip snakes (Demansia psammophis) were shuttling heliotherms active only during daylight hours at relatively high body temperatures; in a laboratory thermal gradient these animals selected high body temperatures (mean 31.3°C during the day and 33.2°C at night). The other three taxa – golden-crowned snakes (Cacophis squamulosus), small-eyed snakes (Cryptophis nigrescens) and marsh snakes (Hemiaspis signata) – were active mostly at night at relatively low body temperatures, and selected low body temperatures in a thermal gradient (18.1–23.4°C). Thus, mean selected body temperatures differ substantially among sympatric elapid species in south-eastern Australia and are correlated with times of activity.


We thank M. Elphick and F. Seebacher for their encouragement and assistance, and F. Lemckert for generously providing snakes for this study. We thank two anonymous reviewers for providing critical comments and suggestions that helped to improve an earlier version of the manuscript. This work was carried out in accordance with the University of Sydney Animal Care and Ethics Committee and under a scientific licence from the NSW National Parks and Wildlife Service. The research was supported by a grant from the Australian Research Council to R. Shine and J. Webb.


Andren, C. (1982). Effect of prey density on reproduction, foraging and other activities in the adder, Vipera berus. Amphibia-Reptilia 3, 81–96.

Angilletta, M. J. , Hill, T. , and Robson, M. A. (2002). Is physiological performance optimised by thermoregulatory behaviour? A case study of the eastern fence lizard, Sceloporus undulatus. Journal of Thermal Biology 27, 199–204.
CrossRef |

Autumn, K. , Jindrich, D. , Denardo, D. , and Mueller, R. (1999). Locomotor performance at low temperature and the evolution of nocturnality in geckos. Evolution 53, 580–599.

Cogger H. G. (2000). ‘Reptiles and Amphibians of Australia.’ 6th edn. (Reed New Holland: Sydney.)

Cogger H., and Heatwole H. (1981). The Australian reptiles: origins, biogeography, distribution patterns and island biogeography. In ‘Ecological Biogeography of Australia’. (Ed. A. Keast.) pp. 1332–1373. (Junk: The Hague.)

Cogger H. G., Cameron E. E., and Cogger H. M. (1983). ‘Zoological Catalogue of Australia. Volume 1. Amphibia and Reptilia.’ (Australian Government Publishing Service: Canberra.)

Du, W. , Yan, S. , and Ji, X. (2000). Selected body temperature, thermal tolerance and thermal dependence of food assimilation and locomotor performance in adult blue-tailed skinks, Eumeces elegans. Journal of Thermal Biology 25, 197–202.
CrossRef |

Fitzgerald, M. , Shine, R. , and Lemckert, F. (2003). A reluctant heliotherm: thermal ecology of the arboreal snake Hoplocephalus stephensii (Elapidae) in dense forest. Journal of Thermal Biology 28, 515–524.
CrossRef |

Greer A. E. (1997). ‘The Biology and Evolution of Australian Snakes.’ (Surrey Beatty: Sydney.)

Hammerson, G. A. (1979). Thermal ecology of the striped racer, Masticophis lateralis. Herpetologica 35, 267–273.

Heatwole, H. , and Johnson, C. R. (1979). Thermoregulation in the red-bellied blacksnake, Pseudechis porphyriacus (Elapidae). Zoological Journal of the Linnean Society 63, 83–101.

Hertz, P. E. , Huey, R. B. , and Nevo, E. (1983). Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution 37, 1075–1084.

Hertz, P. E. , Huey, R. B. , and Stevenson, R. D. (1993). Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. American Naturalist 142, 796–818.
CrossRef |

Huey, R. B. , and Bennett, A. F. (1987). Phylogenetic studies of co-adaptation: preferred temperatures versus optimal performance temperatures of lizards. Evolution 41, 1098–1115.

Huey, R. B. , Niewiarowski, P. H. , Kaufmann, J. , and Herron, J. C. (1989). Thermal biology of nocturnal ectotherms: is sprint performance of geckos maximal at low body temperatures? Physiological Zoology 62, 488–504.

Lillywhite, H. (1980). Behavioral thermoregulation in Australian elapid snakes. Copeia 1980, 452–458.

Peterson C. R., Gibson A. R., and Dorcas M. E. (1993). Snake thermal ecology: the causes and consequences of body-temperature variation. In ‘Snakes: Ecology and Behavior’. (Eds R. A. Seigel and J. T. Collins.) pp. 241–314. (McGraw-Hill: New York.)

Pringle, R. M. , Webb, J. K. , and Shine, R. (2003). Canopy structure, microclimate, and habitat selection by a nocturnal snake, Hoplocephalus bungaroides. Ecology 84, 2668–2679.

Robert, K. A. , and Thompson, M. B. (2003). Reconstructing Thermochron iButtons to reduce size and weight as a new technique in the study of small animal thermal biology. Herpetological Review 34, 130–132.

Rohr, D. H. , and Malone, B. S. (2001). Activity times and body temperature in Australian copperheads (Serpentes: Elapidae). Australian Journal of Zoology 49, 223–233.
CrossRef |

Schwaner, T. (1989). A field study of thermoregulation in black tiger snakes (Notechis ater niger: Elapidae) on the Franklin Islands, South Australia. Herpetologica 45, 393–401.

Shine, R. (1977). Habitats, diets and sympatry in snakes: a study from Australia. Canadian Journal of Zoology 55, 1118–1128.

Shine, R. (1979). Activity patterns in Australian elapid snakes (Squamata: Serpentes: Elapidae). Herpetologica 35, 1–11.

Shine, R. (1980a). Comparative ecology of three Australian snake species of the genus Cacophis (Serpentes: Elapidae). Copeia 1980, 831–838.

Shine, R. (1980b). Ecology of eastern Australian whip snakes of the genus Demansia. Journal of Herpetology 14, 381–389.

Shine, R. (1984). Reproductive biology and food habits of the Australian elapid snakes of the genus Cryptophis. Journal of Herpetology 18, 33–39.

Shine, R. (1987). Intraspecific variation in thermoregulation, movements and habitat use by Australian blacksnakes, Pseudechis porphyriacus (Elapidae). Journal of Herpetology 21, 165–177.

Shine R. (1991). ‘Australian Snakes. A Natural History.’ (Reed Books: Sydney.)

Shine, R. , and Lambeck, R. (1990). Seasonal shifts in the thermoregulatory behaviour of Australian blacksnakes, Pseudechis porphyriacus. Journal of Thermal Biology 15, 301–305.
CrossRef |

Shine, R. , Elphick, M. J. , and Barrott, E. G. (2003). Sunny side up: lethally high, not low, temperatures may prevent oviparous reptiles from reproducing at high elevations. Biological Journal of the Linnean Society 78, 325–334.
CrossRef |

Webb, J. K. , and Shine, R. (1998). Thermoregulation by a nocturnal elapid snake (Hoplocephalus bungaroides) in south-eastern Australia. Physiological Zoology 71, 680–692.
PubMed |

Webb, J. K. , Pringle, R. M. , and Shine, R. (2004). How do nocturnal snakes select diurnal retreat sites? Copeia 2004, 919–925.

Whitaker, P. B. , and Shine, R. (2002). Thermal biology and activity patterns of the eastern brownsnake (Pseudonaja textilis): a radiotelemetric study. Herpetologica 58, 436–452.

Rent Article (via Deepdyve) Export Citation Cited By (8)