Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology

Effect of egg location and respiratory gas concentrations on developmental success in nests of the leatherback turtle, Dermochelys coriacea

Cameron R. Ralph A , Richard D. Reina A E , Bryan P. Wallace B , Paul R. Sotherland C , James R. Spotila B and Frank V. Paladino D
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, Monash University, Vic. 3800, Australia.

B Department of Bioscience and Biotechnology, Drexel University, Philadelphia, PA 19104, USA.

C Department of Biology, Kalamazoo College, Kalamazoo, MI 49006, USA.

D Department of Biology, Indiana-Purdue University, Fort Wayne, IN 46805, USA.

E Corresponding author. Email:

Australian Journal of Zoology 53(5) 289-294
Submitted: 7 September 2004  Accepted: 24 August 2005   Published: 11 November 2005


Hatching success of leatherback turtles, Dermochelys coriacea, is typically ~50%, but the reasons for embryonic death are unknown. We investigated the distribution of egg failure within 16 developing nests to determine whether spatial position or respiratory environment was associated with embryonic death. We measured oxygen and carbon dioxide partial pressures during incubation to investigate whether any spatial variation in developmental success was associated with regions of hypoxia or hypercapnia. Eggs in the centre of nests had a significantly lower mean hatching success (42.1 ± 7.6%) than eggs in the intermediate (66.1 ± 5.3%) and peripheral (69.8 ± 3.5%) regions. Of those eggs that died, there were no significant differences in the timing of early- and late-stage embryonic death in central (77.6 ± 7.2% early death, 17.3 ± 8.2% late death) and peripheral (80.8 ± 10.1% early death, 14.7 ± 5.8% late death) regions. Oxygen tension in all regions of nests was significantly lower and carbon dioxide tension was significantly higher than in control nests by Day 35 of incubation. Although spatial variation in respiratory gases was detected, it did not appear to explain spatially variable developmental success because late-stage embryonic death did not increase in the central region where oxygen tension was lowest and carbon dioxide tension was highest.


We thank Rotney Piedra and officials of the Ministerio de Ambiente y Energía (MINAE), Costa Rica for permission to work at Parque Nacional Marino Las Baulas. Thanks to many field assistants and volunteers for logistical support. Financial assistance was provided by the Earthwatch Institute and Monash University. This study was conducted under permit 276-2003-OFAU from MINAE and animal ethics approval BSCI/2003/05 from Monash University.


Ackerman, R. A. (1977). The respiratory gas exchange of sea turtle nests (Chelonia, Caretta). Respiration Physiology 31, 19–38.
CrossRef | PubMed |

Ackerman, R. A. (1980). Physiological and ecological aspects of gas exchange by sea turtle eggs. American Zoologist 20, 575–583.

Ackerman, R. A. (1981). Growth and gas exchange of embryonic sea turtles (Chelonia, Caretta). Copeia 1981, 757–765.

Ackerman R. A. (1997). The nest environment and the embryonic development of sea turtles. In ‘The Biology of Sea Turtles’. (Eds P. L. Lutz and J. A. Musick.) pp. 83–106. (CRC Press: Boca Raton, FL.)

Bell, B. A. , Spotila, J. R. , Paladino, F. V. , and Reina, R. D. (2004). Low reproductive success of leatherback turtles, Dermochelys coriacea, is due to high embryonic mortality. Biological Conservation 115, 131–138.
CrossRef |

Bilinski, J. J. , Reina, R. D. , Paladino, F. V. , and Spotila, J. R. (2001). The effects of nest environment of calcium mobilization by leatherback turtle embryos (Dermochelys coriacea) during development. Comparative Biochemistry and Physiology. A: Comparative Physiology 130, 151–162.
CrossRef |

Billes, A. , and Fretey, J. (2001). Nest morphology in the leatherback turtle. Marine Turtle Newsletter 92, 7–9.

Drake, D. L. , and Spotila, J. R. (2002). Thermal tolerances and the timing of sea turtle hatchling emergence. Journal of Thermal Biology 27, 71–81.
CrossRef |

Eckert, K. L. , and Eckert, S. A. (1990). Embryo mortality and hatch success of in situ and translocated leatherback sea turtle eggs, Dermochelys coriacea. Biological Conservation 53, 37–46.
CrossRef |

Leslie, A. J. , Penick, D. N. , Spotila, J. R. , and Paladino, F. V. (1996). Leatherback turtle, Dermochelys coriacea, nesting and nest success at Tortuguero, Costa Rica, in 1990–1991. Chelonian Conservation and Biology 2, 159–168.

Maloney, J. E. , Darian-Smith, C. , Takahashi, Y. , and Limpus, C. J. (1990). The environment of the embryonic loggerhead sea turtle (Caretta caretta) in Queensland. Copeia 1990, 378–387.

Miller J. D. (1985). Embryology of marine turtles. In ‘Biology of the Reptilia, Vol 14A’. (Eds C. Gans, F. Billett and P. F. A. Maderson.) pp. 269–328. (Wiley-Interscience: New York.)

Miller J. D. (1997). Reproduction in sea turtles. In ‘The Biology of Sea Turtles’. (Eds P. L. Lutz and J. A. Musick.) pp. 51–80. (CRC Press: Boca Raton, FL.)

Nordmoe, E. D. , Sieg, A. E. , Sotherland, P. R. , Spotila, J. R. , Paladino, F. V. , and Reina, R. D. (2004). Nest site fidelity of leatherback turtles at Playa Grande, Costa Rica. Animal Behaviour 68, 387–394.
CrossRef |

Packard, G. C. , and Packard, M. J. (1987). Influence of moisture, temperature and substrate on snapping turtle eggs and embryos. Ecology 68, 983–993.

Prange, H. , and Ackerman, R. (1974). Oxygen consumption and mechanisms of gas exchange of green turtle (Chelonia mydas) eggs and hatchlings. Copeia 1974, 758–763.

Rahn, H. , Paganelli, C. V. , and Ar, A. (1974). The avian egg: air-cell gas tension, metabolism and incubation time. Respiration Physiology 22, 297–309.
CrossRef | PubMed |

Reina, R. D. , Mayor, P. A. , Spotila, J. R. , Piedra, R. , and Paladino, F. V. (2002). Nesting ecology of the leatherback turtle, Dermochelys coriacea, at Parque Nacional Marino Las Baulas, Costa Rica: 1988–89 to 1999–2000. Copeia 2002, 653–664.

Reynolds D. P. (2000). Emergence success and nest environment of natural and hatchery nests of the leatherback turtle Dermochelys coriacea at Playa Grande, Costa Rica, 1998–99. M.S. Thesis, Drexel University, Philadelphia, PA.

Spotila, J. R. , Reina, R. D. , Steyermark, A. C. , Plotkin, P. T. , and Paladino, F. V. (2000). Pacific leatherback turtles face extinction. Nature 405, 529–530.
CrossRef | PubMed |

Steyermark, A. C. , Williams, K. , Spotila, J. R. , Paladino, F. V. , Rostal, D. C. , Morreale, S. J. , Koberg, M. T. , and Arauz, R. (1996). Nesting leatherback turtles at Las Baulas National Park, Costa Rica. Chelonian Conservation and Biology 2, 173–183.

Wallace, B. P. , Sotherland, P. R. , Spotila, J. R. , Reina, R. D. , Franks, B. F. , and Paladino, F. V. (2004). Biotic and abiotic factors affect the nest environment of embryonic leatherback turtles, Dermochelys coriacea. Physiological and Biochemical Zoology 77, 423–432.
CrossRef | PubMed |

Whitmore, C. P. , and Dutton, P. H. (1985). Infertility, embryonic mortality and nest-site selection in leatherback and green sea turtles in Suriname. Biological Conservation 34, 251–272.
CrossRef |

Williams K. (1996). The effect of nest position and clutch size on the nest environment and hatching success of sea turtle nests at Playa Grande, Costa Rica. M.S. Thesis, SUNY College at Buffalo, Buffalo, NY.

Rent Article (via Deepdyve) Export Citation Cited By (13)