Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology

Ecological and evolutionary significance of sizes of giant extinct kangaroos

Kristofer M. Helgen A B C , Rod T. Wells D , Benjamin P. Kear B C , Wayne R. Gerdtz E and Timothy F. Flannery B F
+ Author Affiliations
- Author Affiliations

A Division of Mammals, National Museum of Natural History, Smithsonian Institution, NHB 390, MRC 108, PO Box 37012, Washington, DC 20013-7012, USA.

B South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

C School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

D School of Biological Sciences, Flinders University of South Australia, Adelaide, SA 5001, Australia.

E School of Ecology and Environment, Deakin University, Melbourne Campus, Burwood, Vic. 3125, Australia.

F Corresponding author. Email:

Australian Journal of Zoology 54(4) 293-303
Submitted: 21 December 2005  Accepted: 22 June 2006   Published: 11 August 2006


A method, based on femoral circumference, allowed us to develop body mass estimates for 11 extinct Pleistocene megafaunal species of macropodids (Protemnodon anak, P. brehus, P. hopei, P. roechus, Procoptodon goliah, ‘P.’ gilli, Simosthenurus maddocki, S. occidentalis, Sthenurus andersoni, S. stirlingi and S. tindalei) and three fossil populations of the extant eastern grey kangaroo (Macropus giganteus). With the possible exception of P. goliah, the extinct taxa were browsers, among which sympatric, congeneric species sort into size classes separated by body mass increments of 20–75%. None show evidence of size variation through time, and only the smallest (‘P.’ gilli) exhibits evidence suggestive of marked sexual dimorphism. The largest surviving macropodids (five species of Macropus) are grazers which, although sympatric, do not differ greatly in body mass today, but at least one species (M. giganteus) fluctuated markedly in body size over the course of the Pleistocene. Sexual dimorphism in these species is marked, and may have varied through time. There is some mass overlap between the extinct and surviving macropodid taxa. With a mean estimated body mass of 232 kg, Procoptodon goliah was the largest hopping mammal ever to exist.


This paper is dedicated to the memory of the late Russell V. Baudinette. We thank Dick Tedford, Bert Roberts, Jared Diamond, Craig McGowan, Gavin Prideaux, Tomasz Owerkowicz, Phillip Matthews, Mike Bennett and two anonymous reviewers for insightful discussion and other contributions to this manuscript. We especially thank S. Ingelby and T. Ennis (Australian Museum), W. Longmore (Museum Victoria), and C. Kemper and D. Stemmer (South Australian Museum) for access to specimens under their care. John Kelly of Kangaroo Industry Australia and the staff of Southern Game Meats facilitated the acquisition of femora of red and grey kangaroos of known bodyweight. KMH was supported by fellowships from NSF and the Australian IPRS program.


Alexander, R. M. (1998). All-time giants: the largest animals and their problems. Palaeontology 41, 1231–1245.

Alexander, R. M. , and Vernon, A. (1975). The mechanics of hopping in kangaroos (Macropodidae). Journal of Zoology 177, 265–303.

Anderson, J. F. , Hall-Martin, A. , and Russell, D. A. (1985). Long-bone circumference and mass in mammals, birds, and dinosaurs. Journal of Zoology 207, 53–61.

Anyonge, W. (1993). Body mass in large extant and extinct carnivores. Journal of Zoology 231, 339–350.

Bartholomai, A. (1973). The genus Protemnodon Owen (Marsupialia, Macropodidae) in the upper Cainozoic deposits of Queensland. Memoirs of the Queensland Museum 16, 309–363.

Baudinette R. V. (1989). The biomechanics and energetics of locomotion in Macropoidea. In ‘Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Grigg, P. Jarman and I. Hume.) pp. 245–253. (Surrey Beatty: Sydney.)

Bennett, M. B. (2000). Unifying principles in terrestrial locomotion: do hopping Australian marsupials fit in? Physiological and Biochemical Zoology 73, 726–735.
CrossRef | PubMed |

Bennett, M. B. , and Taylor, G. C. (1995). Scaling of elastic strain energy in kangaroos and the benefits of being big. Nature 378, 56–59.
CrossRef | PubMed |

Brown, J. H. , Gillooly, J. F. , Allen, A. P. , Savage, V. M. , and West, G. B. (2004). Toward a metabolic theory of ecology. Ecology 85, 1771–1789.

Burness, G. P. , Diamond, J. , and Flannery, T. (2001). Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proceedings of the National Academy of Sciences of the United States of America 98, 14 518–14 523.
CrossRef |

Damuth J., and MacFadden B. J. (1990). ‘Body Size in Mammalian Paleobiology: Estimation and Biological Implications.’ (Cambridge University Press: Cambridge.)

Erickson, G. M. , De Ricqles, A. , De Buffrenil, V. , Molnar, R. E. , and Bayless, M. K. (2003). Vermiform bones and the evolution of gigantism in Megalania: how a reptilian fox became a lion. Journal of Vertebrate Paleontology 23, 966–970.
CrossRef |

Fairbairn, D. J. (1997). Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annual Review of Ecology and Systematics 28, 659–687.
CrossRef |

Flannery, T. F. (1980). Macropus mundjabus, a new kangaroo (Marsupialia: Macropodidae) of uncertain age from Victoria, Australia. Australian Mammalogy 3, 35–51.

Flannery T. F. (1989). Phylogeny of the Macropodoidea: a study in convergence. In ‘Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Grigg, P. Jarman and I. Hume.) pp. 1–46. (Surrey Beatty: Sydney.)

Flannery T. F. (1995). ‘Mammals of New Guinea.’ Revised edn. (Reed Publishing: Sydney.)

Flannery T. F. (2004). ‘Country.’ (Text Publishing: Melbourne.)

Flannery, T. F. , and Gott, B. (1985). The Spring Creek locality: a late Pleistocene megafaunal site from southwestern Victoria. Australian Zoologist 21, 385–422.

Flannery, T. F. , Mountain, M.-J. , and Aplin, K. (1983). Quaternary kangaroos (Macropodidae, Marsupialia) from Nombe rock shelter, Papua New Guinea, with comments on the nature of the megafaunal extinction in the New Guinea highlands. Proceedings of the Linnean Society of New South Wales 107, 75–98.

Hayes, G. , and Alexander, R. M. (1983). The hopping gaits of crows (Corvidae) and other bipeds. Journal of Zoology 200, 205–213.

Hooijer, D. A. (1950). The study of subspecific advance in the Quaternary. Evolution 4, 360–361.
CrossRef |

Jetz, W. , Carbone, C. , Fulford, J. , and Brown, J. H. (2004). The scaling of animal space use. Science 306, 266–268.
CrossRef | PubMed |

Johnson, C. N. , and Prideaux, G. J. (2004). Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: no evidence for environmental change as cause of extinction. Australian Ecology 29, 553–557.
CrossRef |

Kear, B. P. , and Cooke, B. N. (2001). A review of macropodoid systematics with the inclusion of a new family. Memoirs of the Association of Australasian Palaeontologists 25, 83–101.

Kingdon J. (1997). ‘The Kingdon Field Guide to African Mammals.’ (Academic Press: London.)

Kurtén B. (1968). ‘Pleistocene Mammals of Europe.’ (Aldine Publications: Chicago.)

Long J., Archer M., Flannery T., and Hand S. (2002). ‘Prehistoric Mammals of Australia and New Guinea.’ (University of New South Wales Press: Sydney.)

Marshall, L. G. , and Corruccini, R. S. (1978). Variability, evolutionary rates, and allometry in dwarfing lineages. Paleobiology 4, 101–118.

McAlpine, C. A. , Mott, J. J. , Grigg, G. C. , and Sharman, P. (1998). The influence of landscape structure on kangaroo abundance in a disturbed semi-arid woodland. The Rangeland Journal 21, 104–134.
CrossRef |

McCullough D. R., and McCullough Y. (2000). ‘Kangaroos in Outback Australia: Comparative Ecology and Behaviour of Three Coexisting Species.’ (Columbia University Press: New York.)

Miller, G. H. , Fogel, M. L. , Magee, J. W. , Gagan, M. K. , Clarke, S. J. , and Johnson, B. J. (2005). Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290.
CrossRef | PubMed |

Molnar R. E. (2004). ‘Dragons in the Dust: The Paleobiology of the Giant Monitor Lizard Megalania.’ (Indiana University Press: Bloomington, IL.)

Murray P. (1984). Extinctions Downunder: a bestiary of extinct Australian late Pleistocene monotremes and marsupials. In ‘Quaternary Extinctions’. (Eds P. S. Martin and R. G. Klein.) pp. 600–628. (University of Arizona Press: Tucson, AZ.)

Murray P. (1991). The Pleistocene megafauna of Australia. In ‘Vertebrate Palaeontology of Australasia’. (Eds P. V. Rich, J. M. Monghan, R. Baird and T. H. Rich.) pp. 1071–1164. (Pioneer Design Studio, Monash University: Melbourne.)

Myers, T. J. (2001). Marsupial body mass prediction. Australian Journal of Zoology 49, 99–118.
CrossRef |

Pledge, N. S. (1980). Macropodid skeletons, including Simosthenurus Tedford, from an unusual “drowned cave” deposit in the southeast of South Australia. Records of the South Australian Museum 18, 131–141.

Prideaux, G. J. (2004). Systematics and evolution of the sthenurine kangaroos. University of California Publications in Geological Sciences 146, 1–623.

Rensch B. (1960). ‘Evolution above the Species Level.’ (Columbia University Press: New York.)

Reynolds, P. S. (2002). How big is a giant? The importance of method in estimating body size of extinct mammals. Journal of Mammalogy 83, 321–332.
CrossRef |

Roberts, R. , Flannery, T. , Ayliffe, L. , Yoshida, H. , and Olley, J. , et al. (2001). New ages for the last Australian megafauna: continent-wide extinction about 46,000 years ago. Science 292, 1888–1892.
CrossRef | PubMed |

Schultz, C. B. , Tanner, L. G. , and Martin, L. D. (1972). Phyletic trends in certain lineages of Quaternary mammals. Bulletin of the University of Nebraska State Museum 9, 183–195.

Smith, R. J. (1993). Logarithmic transformation bias in allometry. American Journal of Physical Anthropology 90, 215–228.
CrossRef |

Smith, R. J. (2002). Estimation of body mass in paleontology. Journal of Human Evolution 43, 271–287.
CrossRef |

Smith, F. A. , Brown, J. H. , Haskell, J. P. , Lyons, S. K. , and Alroy, J. , et al. (2004). Similarity of mammalian body size across the taxonomic hierarchy and across space and time. American Naturalist 163, 672–691.
CrossRef | PubMed |

Stiner, M. C. , Achyuthan, H. , Arsebuk, G. , Howell, F. C. , Josephson, S. C. , Juell, K. E. , Pigati, J. , and Quade, J. (1998). Reconstructing cave bear paleoecology from skeletons: a cross-disciplinary study of middle Pleistocene bears from Yarimburgaz Cave, Turkey. Paleobiology 24, 74–98.

Strahan R. (1995). ‘Mammals of Australia.’ (Smithsonian Institution Press: Washington, DC.)

Tedford, R. H. , and Wells, R. T. (1990). Pleistocene deposits and fossil vertebrates from the “Dead Heart of Australia”. Memoirs of the Queensland Museum 28, 263–284.

Thompson, S. D. , MacMillen, R. E. , Burke, E. M. , and Taylor, C. R. (1980). The energetic cost of bipedal hopping in small mammals. Nature 287, 223–224.
CrossRef | PubMed |

Trueman, C. N. G. , Field, J. H. , Dortch, J. , Charles, B. , and Wroe, S. (2005). Prolonged coexistence of humans and megafauna in Pleistocene Australia. Proceedings of the National Academy of Sciences of the United States of America 102, 8381–8385.
CrossRef | PubMed |

Webster, K. N. , and Dawson, T. J. (2004). Is the energetics of mammalian hopping locomotion advantageous in arid environments? Australian Mammalogy 26, 153–160.

Wells, R. T. , and Tedford, R. H. (1995). Sthenurus (Macropodidae, Marsupialia) from the Pleistocene of Lake Callabonna, South Australia. Bulletin of the American Museum of Natural History 225, 1–111.

Willows-Munro, S. , Robinson, T. J. , and Matthee, C. A. (2005). Utility of nuclear DNA intron markers at lower taxonomic levels: phylogenetic resolution among nine Tragelaphus spp. Molecular Phylogenetics and Evolution 35, 624–636.
CrossRef | PubMed |

Wroe, S. (2002). A review of terrestrial mammalian and reptilian carnivore ecology in Australian fossil faunas, and factors influencing their biodiversity: the myth of reptilian domination and its broader ramifications. Australian Journal of Zoology 50, 1–24.
CrossRef |

Wroe, S. , Myers, T. , Wells, R. T. , and Gillespie, A. (1999). Estimating the mass of the Pleistocene marsupial lion, Thylacoleo carnifex (Thylacoleonidae: Marsupialia): implications for the ecomorphology of a marsupial super-predator and hypothesis of impoverishment of Australian marsupial carnivore faunas. Australian Journal of Zoology 47, 489–498.
CrossRef |

Wroe, S. , Myers, T. , Seebacher, F. , Kear, B. , and Gillespie, A. (2003). An alternative method for predicting body mass: the case of the Pleistocene marsupial lion. Paleobiology 29, 403–411.
CrossRef |

Wroe, S. , Crowther, M. , Dortch, J. , and Chong, J. (2004). The size of the largest marsupial and why it matters. Proceedings of the Royal Society of London. Series B. Biological Sciences 271(Suppl.), S34–S36.
CrossRef |

Appendix 1.  Specimens of extant macropodid species included in the regression analysis
AM M = Australian Museum (Sydney); C = Museum Victoria (Melbourne); SAM M = South Australian Museum (Adelaide)

Appendix 2.  Registration numbers and femoral circumferences (c) for fossil specimens studied
(sa) = subadult (distal epiphysis of femur unfused); AM F = Australian Museum vertebrate palaeontology collection (Sydney); AMNH = American Museum of Natural History paleontology collection (New York); FUCN = Flinders University palaeontology collection (Adelaide); NMV P = Museum of Victoria palaeontology collection (Melbourne); SA = South Australia; SAM P = South Australian Museum palaeontology collection (Adelaide); UCMP = University of California Museum of Paleontology collection (Berkeley)
Click to zoom

Rent Article (via Deepdyve) Export Citation Cited By (15)

View Altmetrics