Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Ecological and evolutionary significance of sizes of giant extinct kangaroos

Kristofer M. Helgen A B C , Rod T. Wells D , Benjamin P. Kear B C , Wayne R. Gerdtz E and Timothy F. Flannery B F

A Division of Mammals, National Museum of Natural History, Smithsonian Institution, NHB 390, MRC 108, PO Box 37012, Washington, DC 20013-7012, USA.

B South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

C School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

D School of Biological Sciences, Flinders University of South Australia, Adelaide, SA 5001, Australia.

E School of Ecology and Environment, Deakin University, Melbourne Campus, Burwood, Vic. 3125, Australia.

F Corresponding author. Email: flannery.tim@saugov.sa.gov.au

Australian Journal of Zoology 54(4) 293-303 http://dx.doi.org/10.1071/ZO05077
Submitted: 21 December 2005  Accepted: 22 June 2006   Published: 11 August 2006

Abstract

A method, based on femoral circumference, allowed us to develop body mass estimates for 11 extinct Pleistocene megafaunal species of macropodids (Protemnodon anak, P. brehus, P. hopei, P. roechus, Procoptodon goliah, ‘P.’ gilli, Simosthenurus maddocki, S. occidentalis, Sthenurus andersoni, S. stirlingi and S. tindalei) and three fossil populations of the extant eastern grey kangaroo (Macropus giganteus). With the possible exception of P. goliah, the extinct taxa were browsers, among which sympatric, congeneric species sort into size classes separated by body mass increments of 20–75%. None show evidence of size variation through time, and only the smallest (‘P.’ gilli) exhibits evidence suggestive of marked sexual dimorphism. The largest surviving macropodids (five species of Macropus) are grazers which, although sympatric, do not differ greatly in body mass today, but at least one species (M. giganteus) fluctuated markedly in body size over the course of the Pleistocene. Sexual dimorphism in these species is marked, and may have varied through time. There is some mass overlap between the extinct and surviving macropodid taxa. With a mean estimated body mass of 232 kg, Procoptodon goliah was the largest hopping mammal ever to exist.


References

Alexander R. M. 1998 All-time giants: the largest animals and their problems. Palaeontology 41 1231 1245

Alexander R. M. Vernon A. 1975 The mechanics of hopping in kangaroos (Macropodidae). Journal of Zoology 177 265 303


Anderson J. F. Hall-Martin A. Russell D. A. 1985 Long-bone circumference and mass in mammals, birds, and dinosaurs. Journal of Zoology 207 53 61


Anyonge W. 1993 Body mass in large extant and extinct carnivores. Journal of Zoology 231 339 350


Bartholomai A. 1973 The genus Protemnodon Owen (Marsupialia, Macropodidae) in the upper Cainozoic deposits of Queensland. Memoirs of the Queensland Museum 16 309 363


Baudinette R. V. (1989). The biomechanics and energetics of locomotion in Macropoidea. In ‘Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Grigg, P. Jarman and I. Hume.) pp. 245–253. (Surrey Beatty: Sydney.)

Bennett M. B. 2000 Unifying principles in terrestrial locomotion: do hopping Australian marsupials fit in? Physiological and Biochemical Zoology 73 726 735
DOI

Bennett M. B. Taylor G. C. 1995 Scaling of elastic strain energy in kangaroos and the benefits of being big. Nature 378 56 59 DOI

Brown J. H. Gillooly J. F. Allen A. P. Savage V. M. West G. B. 2004 Toward a metabolic theory of ecology. Ecology 85 1771 1789

Burness G. P. Diamond J. Flannery T. 2001 Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proceedings of the National Academy of Sciences of the United States of America 98 14 518 14 523
DOI

Damuth J., and MacFadden B. J. (1990). ‘Body Size in Mammalian Paleobiology: Estimation and Biological Implications.’ (Cambridge University Press: Cambridge.)

Erickson G. M. De Ricqles A. De Buffrenil V. Molnar R. E. Bayless M. K. 2003 Vermiform bones and the evolution of gigantism in Megalania: how a reptilian fox became a lion. Journal of Vertebrate Paleontology 23 966 970

Fairbairn D. J. 1997 Allometry for sexual size dimorphism: pattern and process in the coevolution of body size in males and females. Annual Review of Ecology and Systematics 28 659 687
DOI

Flannery T. F. 1980 Macropus mundjabus, a new kangaroo (Marsupialia: Macropodidae) of uncertain age from Victoria, Australia. Australian Mammalogy 3 35 51

Flannery T. F. (1989). Phylogeny of the Macropodoidea: a study in convergence. In ‘Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Grigg, P. Jarman and I. Hume.) pp. 1–46. (Surrey Beatty: Sydney.)

Flannery T. F. (1995). ‘Mammals of New Guinea.’ Revised edn. (Reed Publishing: Sydney.)

Flannery T. F. (2004). ‘Country.’ (Text Publishing: Melbourne.)

Flannery T. F. Gott B. 1985 The Spring Creek locality: a late Pleistocene megafaunal site from southwestern Victoria. Australian Zoologist 21 385 422


Flannery T. F. Mountain M.-J. Aplin K. 1983 Quaternary kangaroos (Macropodidae, Marsupialia) from Nombe rock shelter, Papua New Guinea, with comments on the nature of the megafaunal extinction in the New Guinea highlands. Proceedings of the Linnean Society of New South Wales 107 75 98


Hayes G. Alexander R. M. 1983 The hopping gaits of crows (Corvidae) and other bipeds. Journal of Zoology 200 205 213


Hooijer D. A. 1950 The study of subspecific advance in the Quaternary. Evolution 4 360 361
DOI

Jetz W. Carbone C. Fulford J. Brown J. H. 2004 The scaling of animal space use. Science 306 266 268 DOI

Johnson C. N. Prideaux G. J. 2004 Extinctions of herbivorous mammals in the late Pleistocene of Australia in relation to their feeding ecology: no evidence for environmental change as cause of extinction. Australian Ecology 29 553 557 DOI

Kear B. P. Cooke B. N. 2001 A review of macropodoid systematics with the inclusion of a new family. Memoirs of the Association of Australasian Palaeontologists 25 83 101

Kingdon J. (1997). ‘The Kingdon Field Guide to African Mammals.’ (Academic Press: London.)

Kurtén B. (1968). ‘Pleistocene Mammals of Europe.’ (Aldine Publications: Chicago.)

Long J., Archer M., Flannery T., and Hand S. (2002). ‘Prehistoric Mammals of Australia and New Guinea.’ (University of New South Wales Press: Sydney.)

Marshall L. G. Corruccini R. S. 1978 Variability, evolutionary rates, and allometry in dwarfing lineages. Paleobiology 4 101 118


McAlpine C. A. Mott J. J. Grigg G. C. Sharman P. 1998 The influence of landscape structure on kangaroo abundance in a disturbed semi-arid woodland. The Rangeland Journal 21 104 134
DOI

McCullough D. R., and McCullough Y. (2000). ‘Kangaroos in Outback Australia: Comparative Ecology and Behaviour of Three Coexisting Species.’ (Columbia University Press: New York.)

Miller G. H. Fogel M. L. Magee J. W. Gagan M. K. Clarke S. J. Johnson B. J. 2005 Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309 287 290 DOI

Molnar R. E. (2004). ‘Dragons in the Dust: The Paleobiology of the Giant Monitor Lizard Megalania.’ (Indiana University Press: Bloomington, IL.)

Murray P. (1984). Extinctions Downunder: a bestiary of extinct Australian late Pleistocene monotremes and marsupials. In ‘Quaternary Extinctions’. (Eds P. S. Martin and R. G. Klein.) pp. 600–628. (University of Arizona Press: Tucson, AZ.)

Murray P. (1991). The Pleistocene megafauna of Australia. In ‘Vertebrate Palaeontology of Australasia’. (Eds P. V. Rich, J. M. Monghan, R. Baird and T. H. Rich.) pp. 1071–1164. (Pioneer Design Studio, Monash University: Melbourne.)

Myers T. J. 2001 Marsupial body mass prediction. Australian Journal of Zoology 49 99 118 DOI

Pledge N. S. 1980 Macropodid skeletons, including Simosthenurus Tedford, from an unusual “drowned cave” deposit in the southeast of South Australia. Records of the South Australian Museum 18 131 141

Prideaux G. J. 2004 Systematics and evolution of the sthenurine kangaroos. University of California Publications in Geological Sciences 146 1 623


Rensch B. (1960). ‘Evolution above the Species Level.’ (Columbia University Press: New York.)

Reynolds P. S. 2002 How big is a giant? The importance of method in estimating body size of extinct mammals. Journal of Mammalogy 83 321 332
DOI

Roberts R. Flannery T. Ayliffe L. Yoshida H. Olley J. et al. 2001 New ages for the last Australian megafauna: continent-wide extinction about 46,000 years ago. Science 292 1888 1892 DOI

Schultz C. B. Tanner L. G. Martin L. D. 1972 Phyletic trends in certain lineages of Quaternary mammals. Bulletin of the University of Nebraska State Museum 9 183 195

Smith R. J. 1993 Logarithmic transformation bias in allometry. American Journal of Physical Anthropology 90 215 228
DOI

Smith R. J. 2002 Estimation of body mass in paleontology. Journal of Human Evolution 43 271 287 DOI

Smith F. A. Brown J. H. Haskell J. P. Lyons S. K. Alroy J. et al. 2004 Similarity of mammalian body size across the taxonomic hierarchy and across space and time. American Naturalist 163 672 691 DOI

Stiner M. C. Achyuthan H. Arsebuk G. Howell F. C. Josephson S. C. Juell K. E. Pigati J. Quade J. 1998 Reconstructing cave bear paleoecology from skeletons: a cross-disciplinary study of middle Pleistocene bears from Yarimburgaz Cave, Turkey. Paleobiology 24 74 98

Strahan R. (1995). ‘Mammals of Australia.’ (Smithsonian Institution Press: Washington, DC.)

Tedford R. H. Wells R. T. 1990 Pleistocene deposits and fossil vertebrates from the “Dead Heart of Australia”. Memoirs of the Queensland Museum 28 263 284


Thompson S. D. MacMillen R. E. Burke E. M. Taylor C. R. 1980 The energetic cost of bipedal hopping in small mammals. Nature 287 223 224
DOI

Trueman C. N. G. Field J. H. Dortch J. Charles B. Wroe S. 2005 Prolonged coexistence of humans and megafauna in Pleistocene Australia. Proceedings of the National Academy of Sciences of the United States of America 102 8381 8385 DOI

Webster K. N. Dawson T. J. 2004 Is the energetics of mammalian hopping locomotion advantageous in arid environments? Australian Mammalogy 26 153 160

Wells R. T. Tedford R. H. 1995 Sthenurus (Macropodidae, Marsupialia) from the Pleistocene of Lake Callabonna, South Australia. Bulletin of the American Museum of Natural History 225 1 111


Willows-Munro S. Robinson T. J. Matthee C. A. 2005 Utility of nuclear DNA intron markers at lower taxonomic levels: phylogenetic resolution among nine Tragelaphus spp. Molecular Phylogenetics and Evolution 35 624 636
DOI

Wroe S. 2002 A review of terrestrial mammalian and reptilian carnivore ecology in Australian fossil faunas, and factors influencing their biodiversity: the myth of reptilian domination and its broader ramifications. Australian Journal of Zoology 50 1 24 DOI

Wroe S. Myers T. Wells R. T. Gillespie A. 1999 Estimating the mass of the Pleistocene marsupial lion, Thylacoleo carnifex (Thylacoleonidae: Marsupialia): implications for the ecomorphology of a marsupial super-predator and hypothesis of impoverishment of Australian marsupial carnivore faunas. Australian Journal of Zoology 47 489 498 DOI

Wroe S. Myers T. Seebacher F. Kear B. Gillespie A. 2003 An alternative method for predicting body mass: the case of the Pleistocene marsupial lion. Paleobiology 29 403 411

Wroe S. Crowther M. Dortch J. Chong J. 2004 The size of the largest marsupial and why it matters. Proceedings of the Royal Society of London. Series B. Biological Sciences 271 Suppl. S34 S36




Export Citation