Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology

The heterothermic loophole exploited by penguins

Daniel B. Thomas A B and R. Ewan Fordyce A
+ Author Affiliations
- Author Affiliations

A Department of Geology, University of Otago, PO Box 56, Dunedin 9054, New Zealand.

B Corresponding author. Email:

Australian Journal of Zoology 55(5) 317-321
Submitted: 9 October 2007  Accepted: 16 January 2008   Published: 8 February 2007


Penguins are generally smaller than the predicted minimum body size for marine endotherms. Anatomical observations of the little blue penguin (Eudyptula minor) suggest that extant penguins actively defeat the lower size threshold using regional heterothermy. The wing arteries in the little blue penguin form a humeral plexus, a series of three parallel arteries (including the marginal artery) that stem from the axillary artery, replacing a single brachial artery. Each artery of the plexus is associated with at least two veins to form a counter current heat-retention system. The humeral plexus thus restricts heat from entering distal areas of the wing and dissipating into seawater, ultimately reducing the bulk mass required for heat production and insulation. Humeral plexi are confirmed as a synapomorphic character of the Spheniscinae, with the humeral plexus of E. minor most similar to that of the African penguin Spheniscus demersus. The humeral plexus represents a loophole in body size minima of marine endotherms and offers insight into the ecology of living penguins.


Thanks are due to Dr A. G. Hocken for the provision of penguin material, and to Professor Graham Louw, Cushla McGoverin, and the two anonymous reviewers for helpful comments and suggestions. DBT’s work was funded by a Divisional scholarship supplied by the Division of Sciences, University of Otago, and additional scholarship funds from the Geology and Chemistry Departments, University of Otago.


Adams N. J., and Brown C. R. (1990). Energetics of molt in penguins. In ‘Penguin Biology’. (Eds L. S. Davis and J. T. Darby). pp. 297–315. (Academic Press: San Diego.)

Arad, Z. , Midtgård, U. , and Bernstein, M. H. (1989). Thermoregulation in turkey vultures. Vascular anatomy, arteriovenous heat exchange, and behavior. Condor 91, 505–514.
CrossRef |

Baker, A. J. , Pereira, S. L. , Haddrath, O. P. , and Edge, K. A. (2006). Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proceedings of the Royal Society of London. Series B. Biological Sciences 273, 11–17.
CrossRef |

Baumel J. J. (1993). Systema cardiovasculare. In ‘Handbook of Avian Anatomy: Nomina Anatomica Avium’. (Eds J. J. Baumel, S. A. King, J. E. Breazile, H. E. Evans and J. C. Vanden Berge.) pp. 407–476. (Nuttall Ornithological Club: Cambridge.)

Baumel J. J., and Witmer L. M. (1993). Osteologia. In ‘Handbook of Avian Anatomy: Nomina Anatomica Avium’. (Eds J. J. Baumel, S. A. King, J. E. Breazile, H. E. Evans and J. C. Vanden Berge.) pp. 45–132. (Nuttall Ornithological Club: Cambridge.)

Bertelli, S. , and Giannini, N. P. (2005). A phylogeny of extant penguins (Aves: Sphenisciformes) combining morphology and mitochondrial sequences. Cladistics 21, 209–239.
CrossRef |

Boyer T. P., Antonov J. I., Garcia H. E., Johnson D. R., Locarnini R. A., Mishonov A. V., Pitcher M. T., Baranova O. K., and Smolyar I. V. (2006). ‘World Ocean Database 2005.’ (Ed. S. Levitus.) (US Government Printing Office: Washington, DC.)

Davis L. S., and Renner M. (2004). ‘Penguins.’ (Yale University Press: New Haven, CT.)

Downhower, J. F. , and Blumer, L. S. (1988). Calculating just how small a whale can be. Nature 335, 675.
CrossRef | PubMed |

Filhol, M. H. (1882). Observations relatives à la circulation artérielle dans l’aile de quelques espèces de Manchots. Bulletin de la Société Philomathique de Paris 7, 242.

Frost, P. G. H. , Siegfried, W. R. , and Greenwood, P. J. (1975). Arteriovenous heat-exchange systems in jackass penguin Spheniscus demersus. Journal of Zoology 175, 231–241.

Giannini, N. P. , and Bertelli, S. (2004). Phylogeny of extant penguins based on integumentary and breeding characters. Auk 121, 422–434.
CrossRef |

Ksepka, D. T. , Bertelli, S. , and Giannini, N. P. (2006). The phylogeny of the living and fossil Sphenisciformes (penguins). Cladistics 22, 412–441.
CrossRef |

Louw, G. J. (1992). Functional anatomy of the penguin flipper. Journal of the South African Veterinary Association 63, 113–120.
PubMed |

Nickel R., Schummer A., and Seiferle E. (1977). ‘Anatomy of the Domestic Birds.’ (Trans. W. G. Siller, and P. A. L. Wight.) (Verlag Paul Parey: Berlin.)

Schreiweis D. O. (1982). comparative study of the appendicular musculature of penguins (Aves: Sphenisciformes). Smithsonian Contributions to Zoology No. 341.

Stahel, C. D. , and Nicol, S. C. (1982). Temperature regulation in the little penguin, Eudyptula minor, in air and water. Journal of Comparative Physiology 148, 93–100.

Trawa, G. (1970). Note preliminaire sur la vascularisation des membres des Spheniscides de terre Adelie. Oiseau et la Revue Française d’Ornithologie 40, 142–156.

Watson M. (1883). Report of the anatomy of the Spheniscidae collected during the voyage of H. M. S. Challenger. Report on the scientific results of the voyage of H. M. S. Challenger during the years 1873–76, Zoology VII.

Williams T. D. (1995). ‘The Penguins: Spheniscidae.’ (Oxford University Press: Oxford.)

Rent Article (via Deepdyve) Export Citation Cited By (4)

View Altmetrics