Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Prevalence of the parasitic cymothoid isopod Anilocra nemipteri on its fish host at Lizard Island, Great Barrier Reef

Dominique G. Roche A B D , Laura E. Strong C and Sandra A. Binning A B
+ Author Affiliations
- Author Affiliations

A Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.

B Australian Research Council Centre of Excellence for Coral Reef Studies, Australian National University, Canberra, ACT 0200, Australia.

C Department of Biology, University of Puget Sound, Tacoma, WA 98416, USA.

D Corresponding author. Email: dominique.roche@anu.edu.au

Australian Journal of Zoology 60(5) 330-333 https://doi.org/10.1071/ZO12130
Submitted: 26 October 2012  Accepted: 30 January 2013   Published: 22 February 2013

Abstract

Parasites are ubiquitous in nature but assessing their prevalence in wild fish populations is often challenging due to their cryptic nature. Low abundance can also hinder detailed studies. Here, we report a relatively high prevalence (4.3%; range = 0–28%) of an ectoparasitic cymothoid isopod (Anilocra nemipteri) infecting the bridled monocle bream (Scolopsis bilineatus) on reefs surrounding Lizard Island on the northern Great Barrier Reef (GBR). The prevalence of infected and previously infected fish at this location was nearly 15%, which greatly exceeds reports from other localities on the GBR. At least one parasitised fish was observed at 75% of the reefs surveyed, although prevalence varied across sites. Parasitised S. bilineatus were, on average, 25% smaller than unparasitised or previously parasitised fish. Given that these parasites have known detrimental effects on host growth, survivorship and swimming ability, our observations suggest that A. nemipteri may influence the size structure of its host population in the wild. Since A. nemipteri is large, conspicuous and relatively abundant, it provides an ideal study system to examine a range of important questions on the evolutionary ecology of parasites.

Additional keywords: parasite prevalence, Scolopsis bilineatus.


References

Adlard, R. D., and Lester, R. J. G. (1994). Dynamics of the interaction between the parasitic isopod, Anilocra pomacentri, and the coral reef fish, Chromis nitida. Parasitology 109, 311–324.
Dynamics of the interaction between the parasitic isopod, Anilocra pomacentri, and the coral reef fish, Chromis nitida.CrossRef | open url image1

Adlard, R. D., and Lester, R. J. G. (1995). The life cycle and biology of Anilocra pomacentri (Isopoda, Cymothoidae), an ectoparasitic isopod of the coral reef fish, Chromis nitida (Perciformes, Pomacentridae). Australian Journal of Zoology 43, 271–281.
The life cycle and biology of Anilocra pomacentri (Isopoda, Cymothoidae), an ectoparasitic isopod of the coral reef fish, Chromis nitida (Perciformes, Pomacentridae).CrossRef | open url image1

Barber, I., Hoare, D., and Krause, J. (2000). Effects of parasites on fish behaviour: a review and evolutionary perspective. Reviews in Fish Biology and Fisheries 10, 131–165.
Effects of parasites on fish behaviour: a review and evolutionary perspective.CrossRef | open url image1

Binning, S. A., Roche, D. G., and Layton, C. (2013). Ectoparasites increase swimming costs in a coral reef fish. Biology Letters 9, 20120927.
Ectoparasites increase swimming costs in a coral reef fish.CrossRef | open url image1

Boaden, A. E., and Kingsford, M. J. (2012). Diel behaviour and trophic ecology of Scolopsis bilineatus (Nemipteridae). Coral Reefs 31, 871–883.
Diel behaviour and trophic ecology of Scolopsis bilineatus (Nemipteridae).CrossRef | open url image1

Bruce, N. L. (1987). Australian Pleopodias Richardson, 1910, and Anilocra Leach, 1818 (Isopoda: Cymothoidae), crustacean parasites of marine fishes. Records of the Australian Museum 39, 85–130.
Australian Pleopodias Richardson, 1910, and Anilocra Leach, 1818 (Isopoda: Cymothoidae), crustacean parasites of marine fishes.CrossRef | open url image1

Bunkley-Williams, L., and Williams, E. H. (1998). Isopods associated with fishes: a synopsis and corrections. Journal of Parasitology 84, 893–896.
Isopods associated with fishes: a synopsis and corrections.CrossRef | 1:STN:280:DyaK1M%2FgvVOmtQ%3D%3D&md5=5bb36cc6c34df5deb3b22e1466bb0943CAS | open url image1

Fogelman, R. M., and Grutter, A. S. (2008). Mancae of the parasitic cymothoid isopod, Anilocra apogonae: early life history, host-specificity, and effect on growth and survival of preferred young cardinal fishes. Coral Reefs 27, 685–693.
Mancae of the parasitic cymothoid isopod, Anilocra apogonae: early life history, host-specificity, and effect on growth and survival of preferred young cardinal fishes.CrossRef | open url image1

Fogelman, R. M., Kuris, A. M., and Grutter, A. S. (2009). Parasitic castration of a vertebrate: effect of the cymothoid isopod, Anilocra apogonae, on the five-lined cardinalfish, Cheilodipterus quinquelineatus. International Journal for Parasitology 39, 577–583.
Parasitic castration of a vertebrate: effect of the cymothoid isopod, Anilocra apogonae, on the five-lined cardinalfish, Cheilodipterus quinquelineatus.CrossRef | open url image1

Grutter, A. S. (1994). Spatial and temporal variations of the ectoparasites of seven reef fish species from Lizard Island and Heron Island, Australia. Marine Ecology Progress Series 115, 21–30.
Spatial and temporal variations of the ectoparasites of seven reef fish species from Lizard Island and Heron Island, Australia.CrossRef | open url image1

Grutter, A. S. (1995). Comparison of methods for sampling ectoparasites from coral reef fishes. Marine and Freshwater Research 46, 897–903.
Comparison of methods for sampling ectoparasites from coral reef fishes.CrossRef | open url image1

Jones, C. M., Miller, T. L., Grutter, A. S., and Cribb, T. H. (2008). Natatory-stage cymothoid isopods: description, molecular identification and evolution of attachment. International Journal for Parasitology 38, 477–491.
Natatory-stage cymothoid isopods: description, molecular identification and evolution of attachment.CrossRef | 1:CAS:528:DC%2BD1cXitVeit70%3D&md5=b78ed37d47a243e0f62f8c40f37067f9CAS | open url image1

Justine, J. L. (2010). Parasites of coral reef fish: how much do we know? With a bibliography of fish parasites in New Caledonia. Belgian Journal of Zoology S140, 155–190. open url image1

Kuris, A. M., Hechinger, R. F., Shaw, J. C., Whitney, K. L., Aguirre-Macedo, L., Boch, C. A., Dobson, A. P., Dunham, E. J., Fredensborg, B. L., and Huspeni, T. C. (2008). Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454, 515–518.
Ecosystem energetic implications of parasite and free-living biomass in three estuaries.CrossRef | 1:CAS:528:DC%2BD1cXovV2mt7k%3D&md5=b0362298699111637750b51ddf416c10CAS | open url image1

Lehmann, T. (1993). Ectoparasites: direct impact on host fitness. Parasitology Today (Personal Ed.) 9, 8–13.
Ectoparasites: direct impact on host fitness.CrossRef | 1:STN:280:DC%2BD2cvpvFSjtg%3D%3D&md5=cda803444ffc34918c9b0e7879373ff3CAS | open url image1

Lester, R. J. G., and Sewell, K. B. (1989). Checklist of parasites from Heron Island, Great Barrier Reef. Australian Journal of Zoology 37, 101–128.
Checklist of parasites from Heron Island, Great Barrier Reef.CrossRef | open url image1

Minchella, D. J., and Scott, M. E. (1991). Parasitism: a cryptic determinant of animal community structure. Trends in Ecology & Evolution 6, 250–254.
Parasitism: a cryptic determinant of animal community structure.CrossRef | 1:STN:280:DC%2BC3M7hsVemtw%3D%3D&md5=47ffe3fb66529b6f03bbc41ed0c0fca6CAS | open url image1

Östlund-Nilsson, S., Curtis, L., Nilsson, G. E., and Grutter, A. S. (2005). Parasitic isopod Anilocra apogonae, a drag for the cardinal fish Cheilodipterus quinquelineatus. Marine Ecology Progress Series 287, 209–216.
Parasitic isopod Anilocra apogonae, a drag for the cardinal fish Cheilodipterus quinquelineatus.CrossRef | open url image1

Poulin, R. (1999). The functional importance of parasites in animal communities: many roles at many levels? International Journal for Parasitology 29, 903–914.
The functional importance of parasites in animal communities: many roles at many levels?CrossRef | 1:STN:280:DyaK1MvgvVKjtg%3D%3D&md5=25fd9221442599593a692a7666020dbaCAS | open url image1

Poulin, R., and Thomas, F. (1999). Phenotypic variability induced by parasites: extent and evolutionary implications. Parasitology Today 15, 28–32.
Phenotypic variability induced by parasites: extent and evolutionary implications.CrossRef | 1:STN:280:DC%2BD3c%2FjvVemtw%3D%3D&md5=4164bc2f36421d602c48e939f74c5401CAS | open url image1

Randall, J. E., Allen, G. R., and Steene, R. C. (1997). ‘Fishes of the Great Barrier Reef and Coral Sea.’ (University of Hawaii Press: Honolulu.)

Vogel, S. (1994). ‘Life in Moving Fluids: the Physical Biology of Flow.’ 2nd edn. (Princeton University Press: Princeton.)

Wood, C. L., Byers, J. E., Cottingham, K. L., Altman, I., Donahue, M. J., and Blakeslee, A. M. H. (2007). Parasites alter community structure. Proceedings of the National Academy of Sciences of the United States of America 104, 9335–9339.
Parasites alter community structure.CrossRef | 1:CAS:528:DC%2BD2sXmtlehs70%3D&md5=bf81048f5605d81a03f7605ba12c6b46CAS | open url image1



Rent Article (via Deepdyve) Export Citation Cited By (8)