Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Seed germination of Bromelia serra (Bromeliaceae): effects of the canopy openness where the mother plant lived and the light environment of the germination place

Rodrigo M. Freire https://orcid.org/0000-0002-0735-1503 A * , Graciela N. Klekailo A , Jorgelina P. Asmus A B , Ángeles Tessore A , Andrés Cococcioni A , Verónica Albute A and Ignacio M. Barberis https://orcid.org/0000-0002-6605-9270 A B
+ Author Affiliations
- Author Affiliations

A Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino, C.C. 14, S2125ZAA Zavalla, Santa Fe, Argentina.

B IICAR (Instituto de Investigaciones en Ciencias Agrarias de Rosario), Universidad Nacional de Rosario–Consejo Nacional de Investigaciones Científicas y Técnicas, Zavalla, Argentina.

* Correspondence to: rodrigomanuelfreire@hotmail.com

Handling Editor: Margaret Byrne

Australian Journal of Botany 71(1) 1-11 https://doi.org/10.1071/BT21152
Submitted: 22 December 2021  Accepted: 2 December 2022   Published: 3 February 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context: Some plant species show within-generational and trans-generational phenotypic plasticity associated with the light environment for germination traits. In bromeliads, light affects the seed germination of several species, but there is no study analysing the effects of the light environment where the mother plant lived on seed germination. Bromelia serra inhabits the understorey of xerophytic forests, where individuals could be conditioned by the heterogeneous light environment because its cover and abundance are negatively associated with tree basal area and woody vegetation cover.

Aims: To analyse the effect of the light environment on seed germination of B. serra, considering also the light environment where the mother plant lived.

Methods: In four patches from three different sites in a stand of a Schinopsis balansae forest, 48 fruiting plants of B. serra were harvested. Canopy openness was obtained from a hemispherical photograph taken above each plant. From each infructescence, half of the seeds from five fruit were kept in light conditions and the remaining seeds in dark conditions in a germination room.

Key results: There was no effect of the light environment where mother plants lived on seed germination, but the light environment in the germination room positively affected germination variables.

Conclusions: The positive effect of light on seed germination of B. serra might explain the spatial distribution of individual plants in these xerophytic forests.

Implications: These results have enhanced our understanding of the regeneration and distribution of understorey herbaceous species in these South American forests.

Keywords: bromeliad, forest, germination, light, maternal effects, phenotypic plasticity, quebrachal, trans-generational plasticity, within-generational plasticity.


References

Alvarez Arnesi E, Klekailo GN, Freire RM, Cococcioni A, Asmus JP, Tessore Á, Barberis IM (2019) Caracteres vegetativos y reproductivos de Bromelia serra (Bromeliaceae): variaciones a distintas escalas espaciales y efectos del ambiente lumínico. Ecología Austral 29, 352–364.
Caracteres vegetativos y reproductivos de Bromelia serra (Bromeliaceae): variaciones a distintas escalas espaciales y efectos del ambiente lumínico.Crossref | GoogleScholarGoogle Scholar |

Amat AG (1988) Identificación de las especies argentinas del género Bromelia L. (Bromeliaceae: Bromelioideae) mediante caracteres espermatológicos. Acta Farmacéutica Bonaerense 7, 25–32.

Arenas P, Arroyo SC (1988) Las especies comestibles del género Bromelia (Bromeliaceae) del Gran Chaco. Candollea 43, 645–660.

Bader MY, Menke G, Zotz G (2009) Pronounced drought tolerance characterizes the early life stages of the epiphytic bromeliad Tillandsia flexuosa. Functional Ecology 23, 472–479.
Pronounced drought tolerance characterizes the early life stages of the epiphytic bromeliad Tillandsia flexuosa.Crossref | GoogleScholarGoogle Scholar |

Barberis IM, Lewis JP (2005) Heterogeneity of terrestrial bromeliad colonies and regeneration of Acacia praecox (Fabaceae) in a humid–subtropical–Chaco forest, Argentina. Revista de Biología Tropical 53, 377–385.
Heterogeneity of terrestrial bromeliad colonies and regeneration of Acacia praecox (Fabaceae) in a humid–subtropical–Chaco forest, Argentina.Crossref | GoogleScholarGoogle Scholar |

Barberis IM, Pire EF, Lewis JP (1998) Spatial heterogeneity and woody species distribution in a Schinopsis balansae (Anacardiaceae) forest of the Southern Chaco, Argentina. Revista de Biología Tropical 46, 515–524.

Barberis IM, Batista WB, Pire EF, Lewis JP, León RJC (2002) Woody population distribution and environmental heterogeneity in a Chaco forest, Argentina. Journal of Vegetation Science 13, 607–614.
Woody population distribution and environmental heterogeneity in a Chaco forest, Argentina.Crossref | GoogleScholarGoogle Scholar |

Barberis IM, Torres PS, Batista WB, Magra G, Galetti L, Lewis JP (2014) Two bromeliad species with contrasting functional traits partition the understory space in a South American xerophytic forest: correlative evidence of environmental control and limited dispersal. Plant Ecology 215, 143–153.
Two bromeliad species with contrasting functional traits partition the understory space in a South American xerophytic forest: correlative evidence of environmental control and limited dispersal.Crossref | GoogleScholarGoogle Scholar |

Barberis IM, Cárcamo JM, Cárcamo JI, Albertengo J (2017) Phenotypic plasticity in Bromelia serra Griseb.: morphological variations due to plant size and habitats with contrasting light availability. Revista Brasilera de Biociências 15, 143–150.

Barberis IM, Klekailo G, Albertengo J, Cárcamo JI, Cárcamo JM, Galetti L (2020) Ramet demography of Aechmea distichantha (Bromeliaceae) in two contrasting years in the understory and open areas of a South American xerophytic forest. Rodriguésia 71, e00262018

Baskin CC, Baskin JM (1998) ‘Seeds: ecology, biogeography, and, evolution of dormancy and germination.’ (Elsevier)

Baskin CC, Baskin JM (2014) ‘Seeds: ecology, biogeography and evolution of dormancy and germination’, 2nd edn. (Academic Press: San Diego, CA, USA)

Baskin JM, Baskin CC (2019) How much influence does the paternal parent have on seed germination? Seed Science Research 29, 1–11.
How much influence does the paternal parent have on seed germination?Crossref | GoogleScholarGoogle Scholar |

Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1–48.
Fitting linear mixed-effects models using lme4.Crossref | GoogleScholarGoogle Scholar |

Benzing DH (1978) Germination and early establishment of Tillandsia circinnata Schlecht. (Bromeliaceae) on some of its hosts and other supports in southern Florida. Selbyana 5, 95–106.

Bewley JD (1997) Seed germination and dormancy. The Plant Cell 9, 1055–1066.
Seed germination and dormancy.Crossref | GoogleScholarGoogle Scholar |

Bewley JD, Black M (1985) ‘Seeds-physiology of development and germination.’ (Plenum Press: New York, NY, USA)

Bianchi MB, Gibbs PE, Prado DE, Vesprini JL (2000) Studies on the breeding systems of understorey species of a Chaco woodland in NE Argentina. Flora 195, 339–348.
Studies on the breeding systems of understorey species of a Chaco woodland in NE Argentina.Crossref | GoogleScholarGoogle Scholar |

Caffini NO, Natalucci CL, Priolo NS, Buttazzoni MS (1988) Proteasas de Bromeliaceae. IV. Aislamiento de una fitoproteasa sulfhidrílica presente en frutos de Bromelia serra Griseb. Acta Farmacológica Bonaerense 7, 9–14.

Cavallero L, López D, Barberis IM (2009) Morphological variation of Aechmea distichantha (Bromeliaceae) in a Chaco forest: habitat and size-related effects. Plant Biology 11, 379–391.
Morphological variation of Aechmea distichantha (Bromeliaceae) in a Chaco forest: habitat and size-related effects.Crossref | GoogleScholarGoogle Scholar |

Cresswell EG, Grime JP (1981) Induction of a light requirement during seed development and its ecological consequences. Nature 291, 583–585.
Induction of a light requirement during seed development and its ecological consequences.Crossref | GoogleScholarGoogle Scholar |

da Rosa SGT, Ferreira AG (1998) Germinação de sementes de espécies medicinais do Rio Grande do Sul: Bromelia antiacantaha Bert., Cuphea carthagenensis (Jacq.) Macbride e Talinum patens (Jacq.) Willdenow. Acta Botanica Brasilica 12, 515–522.
Germinação de sementes de espécies medicinais do Rio Grande do Sul: Bromelia antiacantaha Bert., Cuphea carthagenensis (Jacq.) Macbride e Talinum patens (Jacq.) Willdenow.Crossref | GoogleScholarGoogle Scholar |

Duarte AS, Vieira da Silva C, Puchalski A, Mantovani M, Silva JZ, Reis MS (2007) Estrutura demográfica e produção de frutos de Bromelia antiacantha Bertol. Revista Brasileira de Plantas Medicinais 9, 106–112.

Dutra AS, Teófilo EM, Medeiros Filho S (2010) Germinação de sementes de macambira (Bromelia laciniosa Mart. ex Schult). Revista Caatinga 23, 12–17.

El-Keblawy A, Gairola S, Bhatt A (2016) Maternal salinity environment affects salt tolerance during germination in Anabasis setifera: a facultative desert halophyte. Journal of Arid Land 8, 254–263.
Maternal salinity environment affects salt tolerance during germination in Anabasis setifera: a facultative desert halophyte.Crossref | GoogleScholarGoogle Scholar |

Fenner M, Thompson K (2005) ‘The ecology of seeds.’ (Cambridge University Press: Cambridge, UK)

Fernández-Pascual E, Jiménez-Alfaro B (2014) Phenotypic plasticity in seed germination relates differentially to overwintering and flowering temperatures. Seed Science Research 24, 273–280.
Phenotypic plasticity in seed germination relates differentially to overwintering and flowering temperatures.Crossref | GoogleScholarGoogle Scholar |

Flores-Palacios A, Bustamante-Molina AB, Corona-López AM, Valencia-Díaz S (2015) Seed number, germination and longevity in wild dry forest Tillandsia species of horticultural value. Scientia Horticulturae 187, 72–79.
Seed number, germination and longevity in wild dry forest Tillandsia species of horticultural value.Crossref | GoogleScholarGoogle Scholar |

Fox J, Weisberg S (2018) ‘An R companion to applied regression’, 3rd edn. (Sage Publications)

Frazer GW, Canham CD, Lertzman KP (1999) Gap Light Analyzer (GLA). Version 2.0: imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. (Simon Fraser University: Burnaby, BC, Canada; and The Institute of Ecosystem Studies: Millbrook, NY, USA) Available at http://rem-main.rem.sfu.ca/downloads/Forestry/GLAV2UsersManual.pdf

Funes G, Díaz SM, Venier MP (2009) La temperatura como principal determinante de la germinación en especies del Chaco seco de Argentina. Ecología Austral 19, 129–138.

Galloway LF, Etterson JR (2007) Transgenerational plasticity is adaptive in the wild. Science 318, 1134–1136.
Transgenerational plasticity is adaptive in the wild.Crossref | GoogleScholarGoogle Scholar |

García-Franco JG, Rico Gray V (1991) Biología reproductiva de Tillandsia deppeana steudel (Bromeliaceae) en Veracruz, México. Brenesia 35, 61–79.

Goode LK, Allen MF (2009) Seed germination conditions and implications for establishment of an epiphyte, Aechmea bracteata (Bromeliaceae). Plant Ecology 204, 179–188.
Seed germination conditions and implications for establishment of an epiphyte, Aechmea bracteata (Bromeliaceae).Crossref | GoogleScholarGoogle Scholar |

Graham EA, Andrade JL (2004) Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest. American Journal of Botany 91, 699–706.
Drought tolerance associated with vertical stratification of two co-occurring epiphytic bromeliads in a tropical dry forest.Crossref | GoogleScholarGoogle Scholar |

Gutterman Y, Fenner M (2000) Maternal effects on seeds during development. In ‘Seeds: the ecology of regeneration in plant communities’, 2nd edn. (Ed. M Fenner) pp. 59–84. (CABI Press: Wallingford, UK)

Górski T, Górska K, Nowicki J (1977) Germination of seeds of various herbaceous species under leaf canopy. Flora 166, 249–259.
Germination of seeds of various herbaceous species under leaf canopy.Crossref | GoogleScholarGoogle Scholar |

Harrison XA, Donaldson L, Correa-Cano ME, Evans J, Fisher DN, Goodwin C, Robinson B, Hodgson DJ, Inger R (2017) Best practice in mixed effects modelling and multi-model inference in ecology. PeerJ Preprints 5, e3113v1
Best practice in mixed effects modelling and multi-model inference in ecology.Crossref | GoogleScholarGoogle Scholar |

Klekailo GN, Tuesca D, Barberis IM (2012) Efectos de la temperatura, el ambiente lumínico y la escarificación sobre la germinación de semillas de Bromelia serra Griseb. (Bromeliaceae). Revista Brasileira de Sementes 34, 605–612.
Efectos de la temperatura, el ambiente lumínico y la escarificación sobre la germinación de semillas de Bromelia serra Griseb. (Bromeliaceae).Crossref | GoogleScholarGoogle Scholar |

Lenzi M, Matos JZd, Orth AI (2006) Morphological and reproductive variation of Aechmea lindenii (E. Morren) Baker var. lindenii (Bromeliaceae). Acta Botanica Brasilica 20, 487–500.
Morphological and reproductive variation of Aechmea lindenii (E. Morren) Baker var. lindenii (Bromeliaceae).Crossref | GoogleScholarGoogle Scholar |

Leroy C, Petitclerc F, Orivel J, Corbara B, Carrias J-F, Dejean A, Céréghino R (2017) The influence of light, substrate and seed origin on the germination and establishment of an ant-garden bromeliad. Plant Biology 19, 70–78.
The influence of light, substrate and seed origin on the germination and establishment of an ant-garden bromeliad.Crossref | GoogleScholarGoogle Scholar |

Lewis JP (1991) Three levels of floristical variation in the forests of Chaco, Argentina. Journal of Vegetation Science 2, 125–130.
Three levels of floristical variation in the forests of Chaco, Argentina.Crossref | GoogleScholarGoogle Scholar |

Lewis JP, Pire EF, Barberis IM (1997) Structure, physiognomy and floristic composition of a Schinopsis balansae (Anacardiaceae) forest in the southern Chaco, Argentina. Revista de Biología Tropical 45, 1013–1020.
Structure, physiognomy and floristic composition of a Schinopsis balansae (Anacardiaceae) forest in the southern Chaco, Argentina.Crossref | GoogleScholarGoogle Scholar |

Loh R, Scarano FR, Alves-Ferreira M, Salgueiro F (2015) Clonality strongly affects the spatial genetic structure of the nurse species Aechmea nudicaulis (L.) Griseb. (Bromeliaceae). Botanical Journal of the Linnean Society 178, 329–341.
Clonality strongly affects the spatial genetic structure of the nurse species Aechmea nudicaulis (L.) Griseb. (Bromeliaceae).Crossref | GoogleScholarGoogle Scholar |

Loh R, Scarano FR, Alves-Ferreira M, Salgueiro F (2020) Fine-scale spatial genetic structure, neighbourhood size and gene dispersal in clonal plants: exploring the best possible estimates. Botanical Journal of the Linnean Society 192, 760–772.
Fine-scale spatial genetic structure, neighbourhood size and gene dispersal in clonal plants: exploring the best possible estimates.Crossref | GoogleScholarGoogle Scholar |

Males J (2018) Geography, environment and organismal traits in the diversification of a major tropical herbaceous angiosperm radiation. AoB Plants 10, ply008
Geography, environment and organismal traits in the diversification of a major tropical herbaceous angiosperm radiation.Crossref | GoogleScholarGoogle Scholar |

Mantovani A, Iglesias RR (2008) Factors limiting seed germination of terrestrial bromeliads in the sandy coastal plains (restinga) of Maricá, Rio de Janeiro, Brazil. Rodriguésia 59, 135–150.
Factors limiting seed germination of terrestrial bromeliads in the sandy coastal plains (restinga) of Maricá, Rio de Janeiro, Brazil.Crossref | GoogleScholarGoogle Scholar |

Mantovani A, Iglesias RR (2010) The effect of water stress on seed germination of three terrestrial bromeliads from restinga. Brazilian Journal of Botany 33, 201–205.
The effect of water stress on seed germination of three terrestrial bromeliads from restinga.Crossref | GoogleScholarGoogle Scholar |

Mantuano DG, Martinelli G (2008) Estrutura e crescimento populacional da bromélia clonal Neoregelia cruenta na Restinga de Jurubatiba. Revista Brasileira de Biociências 5, 876–878.

Marques AR, Atman APF, Silveira FAO, de Lemos-Filho JP (2014) Are seed germination and ecological breadth associated? Testing the regeneration niche hypothesis with bromeliads in a heterogeneous neotropical montane vegetation. Plant Ecology 215, 517–529.
Are seed germination and ecological breadth associated? Testing the regeneration niche hypothesis with bromeliads in a heterogeneous neotropical montane vegetation.Crossref | GoogleScholarGoogle Scholar |

Marín AC, Wolf JHD, Oostermeijer JGB, Den Nijs JCM (2008) Establishment of epiphytic bromeliads in successional tropical premontane forests in Costa Rica. Biotropica 40, 441–448.
Establishment of epiphytic bromeliads in successional tropical premontane forests in Costa Rica.Crossref | GoogleScholarGoogle Scholar |

Mercier H, Guerreiro Filho O (1990) Propagação sexuada de algumas bromélias nativas da Mata Atlántica: efeito da luz e da temperatura na germinação. Hoehnea 17, 19–26.

Milberg P, Andersson L, Thompson K (2000) Large-seeded spices are less dependent on light for germination than small-seeded ones. Seed Science Research 10, 99–104.
Large-seeded spices are less dependent on light for germination than small-seeded ones.Crossref | GoogleScholarGoogle Scholar |

Mondragon D, Calvo-Irabien LM (2006) Seed dispersal and germination of the epiphyte Tillandsia brachycaulos (Bromeliaceae) in a tropical dry forest, Mexico. The Southwestern Naturalist 51, 462–470.
Seed dispersal and germination of the epiphyte Tillandsia brachycaulos (Bromeliaceae) in a tropical dry forest, Mexico.Crossref | GoogleScholarGoogle Scholar |

Mondragón D, Valverde T, Hernández-Apolinar M (2015) Population ecology of epiphytic angiosperms: a review. Tropical Ecology 56, 1–39.

Montero G, Klekailo G, Freire R, Torres P, Cococcioni A, Barberis I (2017) Infructescence size has a larger effect than light environment on the abundance of different arthropod feeding guilds dwelling on the infructescences of a terrestrial bromeliad in a xerophytic forest. Studies on Neotropical Fauna and Environment 52, 216–227.
Infructescence size has a larger effect than light environment on the abundance of different arthropod feeding guilds dwelling on the infructescences of a terrestrial bromeliad in a xerophytic forest.Crossref | GoogleScholarGoogle Scholar |

Murdoch AJ, Ellis RH (2000) Dormancy, viability and longevity. In ‘Seeds: the ecology of regeneration in plant communities’, 2nd edn. (Ed. M Fenner) pp. 183–214. (CABI Press: Wallingford, UK)

Müller L-LB, Albach DC, Zotz G (2017) ‘Are 3°C too much?’: thermal niche breadth in Bromeliaceae and global warming. Journal of Ecology 105, 507–516.
‘Are 3°C too much?’: thermal niche breadth in Bromeliaceae and global warming.Crossref | GoogleScholarGoogle Scholar |

Nakagawa S, Schielzeth H (2010) Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biological Reviews 85, 935–956.
Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists.Crossref | GoogleScholarGoogle Scholar |

Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4, 133–142.
A general and simple method for obtaining R2 from generalized linear mixed-effects models.Crossref | GoogleScholarGoogle Scholar |

Nakagawa S, Johnson PCD, Schielzeth H (2017) The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface 14, 20170213
The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded.Crossref | GoogleScholarGoogle Scholar |

Nunes-Freitas AF, Rocha CFD (2007) Spatial distribution by Canistropsis microps (E. Morren ex Mez) Leme (Bromeliaceae: Bromelioideae) in the Atlantic rain forest in Ilha Grande, southeastern Brazil. Brazilian Journal of Biology 67, 467–474.
Spatial distribution by Canistropsis microps (E. Morren ex Mez) Leme (Bromeliaceae: Bromelioideae) in the Atlantic rain forest in Ilha Grande, southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Nájera MT (1974) Estructuras secretoras de las especies argentinas del género Bromelia (Bromeliaceae). Boletín de la Sociedad Argentina de Botánica 15, 384–392.

Paggi GM, Palma-Silva C, Silveira LC, Kaltchuk-Santos E, Bodanese-Zanettini MH, Bered F (2007) Fertility of Vriesea gigantea Gaud. (Bromeliaceae) in southern Brazil. American Journal of Botany 94, 683–689.

Parera A (2002) ‘Los mamíferos de la Argentina y la región austral de Sudamérica.’ (El Ateneo: Buenos Aires, Argentina)

Paulino-Neto HF, Nakano-Oliveira E, de Assis Jardim MM, Vasconcellos-Neto J (2016) Frugivory in Bromelia balansae (Bromeliaceae): the effect of seed passage through the digestive system of potential seed dispersers on germination in an Atlantic Rainforest, Brazil. Journal of Ecosystem & Ecography 6, 224
Frugivory in Bromelia balansae (Bromeliaceae): the effect of seed passage through the digestive system of potential seed dispersers on germination in an Atlantic Rainforest, Brazil.Crossref | GoogleScholarGoogle Scholar |

Pautasso AA, Fandiño B, Raimondi VB (2008) ‘Mamíferos de la provincia de Santa Fe, Argentina.’ (Ediciones Biológica: Santa Fe, Argentina)

Pereira AR, Andrade ACS, Pereira TS, Forzza RC, Rodrigues AS (2009) Comportamento germinativo de espécies epífitas e rupícolas de Bromeliaceae do Parque Estadual do Ibitipoca, Minas Gerais, Brasil. Brazilian Journal of Botany 32, 827–838.
Comportamento germinativo de espécies epífitas e rupícolas de Bromeliaceae do Parque Estadual do Ibitipoca, Minas Gerais, Brasil.Crossref | GoogleScholarGoogle Scholar |

Pierce BA (2009) ‘Genética un enfoque conceptual’, 3rd edn. (Editorial Médica Panamericana)

Pinheiro F, Borghetti F (2003) Light and temperature requirements for germination of seeds of Aechmea nudicaulis (L.) Griesebach and Streptocalyx floribundus (Martius ex Shultes F.) Mez (Bromeliaceae). Acta Botanica Brasilica 17, 27–35.
Light and temperature requirements for germination of seeds of Aechmea nudicaulis (L.) Griesebach and Streptocalyx floribundus (Martius ex Shultes F.) Mez (Bromeliaceae).Crossref | GoogleScholarGoogle Scholar |

Ranal MA, Santana DG (2006) How and why to measure the germination process? Brazilian Journal of Botany 29, 1–11.
How and why to measure the germination process?Crossref | GoogleScholarGoogle Scholar |

Ranal MA, Santana DG, Ferreira WR, Mendes-Rodrigues C (2009) Calculating germination measurements and organizing spreadsheets. Brazilian Journal of Botany 32, 849–855.
Calculating germination measurements and organizing spreadsheets.Crossref | GoogleScholarGoogle Scholar |

Roach DA, Wulff RD (1987) Maternal effects in plants. Annual Review of Ecology and Systematics 18, 209–235.
Maternal effects in plants.Crossref | GoogleScholarGoogle Scholar |

Rogalski JM, Reis A, dos Reis MS, Neto CD (2007) Estrutura demográfica da bromélia clonal Dyckia brevifolia Baker, Rio Itajaí-Açu, SC. Revista Brasileira de Biociências 5, 264–266.

Sampaio MC, Perissé LE, de Oliveira GA, Rios RI (2002) The contrasting clonal architecture of two bromeliads from sandy coastal plains in Brazil. Flora – Morphology, Distribution, Functional Ecology of Plants 197, 443–451.
The contrasting clonal architecture of two bromeliads from sandy coastal plains in Brazil.Crossref | GoogleScholarGoogle Scholar |

Sampaio MC, Araújo TF, Scarano FR, Stuefer JF (2004) Directional growth of a clonal bromeliad species in response to spatial habitat heterogeneity. Evolutionary Ecology 18, 429–442.
Directional growth of a clonal bromeliad species in response to spatial habitat heterogeneity.Crossref | GoogleScholarGoogle Scholar |

Sampaio MC, Picó FX, Scarano FR (2005) Ramet demography of a nurse bromeliad in Brazilian restingas. American Journal of Botany 92, 674–681.
Ramet demography of a nurse bromeliad in Brazilian restingas.Crossref | GoogleScholarGoogle Scholar |

Santos DS (2001) Biologia reprodutiva de Bromelia antiacantha Bertol. (Bromeliaceae) em uma população natural sob cobertura de floresta ombrófila mista. Mestrado em Recursos Genéticos Vegetais, Universidade Federal de Santa Catarina, Florianópolis.

Satterthwaite FE (1941) Synthesis of variance. Psychometrika 6, 309–316.
Synthesis of variance.Crossref | GoogleScholarGoogle Scholar |

Schmitt J, Niles J, Wulff RD (1992) Norms of reaction of seed traits to maternal environments in Plantago lanceolata. The American Naturalist 139, 451–466.
Norms of reaction of seed traits to maternal environments in Plantago lanceolata.Crossref | GoogleScholarGoogle Scholar |

Smith LB, Downs RJ (1974) Pitcairnioideae (Bromeliaceae). Flora Neotropica 14, 1–658.

Smith LB, Downs RJ (1979) Bromelioideae (Bromeliaceae). Flora Neotropica 14, 1493–2142.

Solomon M, Ariel R, Mayer AM, Poljakoff-Mayber A (1989) Reversal by calcium of salinity-induced growth inhibition in excised pea roots. Israel Journal of Plant Sciences 38, 65–69.
Reversal by calcium of salinity-induced growth inhibition in excised pea roots.Crossref | GoogleScholarGoogle Scholar |

Stoffel MA, Nakagawa S, Schielzeth H (2017) rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods in Ecology and Evolution 8, 1639–1644.
rptR: repeatability estimation and variance decomposition by generalized linear mixed-effects models.Crossref | GoogleScholarGoogle Scholar |

Sultan SE (1996) Phenotypic plasticity for offspring traits in Polygonum persicaria. Ecology 77, 1791–1807.
Phenotypic plasticity for offspring traits in Polygonum persicaria.Crossref | GoogleScholarGoogle Scholar |

Suter L, Widmer A (2013) Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana. PLoS ONE 8, e60364
Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar |

Ticktin T (2005) Applying a metapopulation framework to the management and conservation of a non-timber forest species. Forest Ecology and Management 206, 249–261.
Applying a metapopulation framework to the management and conservation of a non-timber forest species.Crossref | GoogleScholarGoogle Scholar |

Ticktin T, Nantel P (2004) Dynamics of harvested populations of the tropical understory herb Aechmea magdalenae in old-growth versus secondary forests. Biological Conservation 120, 461–470.
Dynamics of harvested populations of the tropical understory herb Aechmea magdalenae in old-growth versus secondary forests.Crossref | GoogleScholarGoogle Scholar |

Toledo-Aceves T, Wolf JHD (2008) Germination and establishment of Tillandsia eizii (Bromeliaceae) in the canopy of an oak forest in Chiapas, Mexico. Biotropica 40, 246–250.
Germination and establishment of Tillandsia eizii (Bromeliaceae) in the canopy of an oak forest in Chiapas, Mexico.Crossref | GoogleScholarGoogle Scholar |

Toledo-Aceves T, García-Franco JG, Landero Lozada S, León Mateos M, MacMillan K (2012) Germination and seedling survivorship of three Tillandsia species in the cloud-forest canopy. Journal of Tropical Ecology 28, 423–426.
Germination and seedling survivorship of three Tillandsia species in the cloud-forest canopy.Crossref | GoogleScholarGoogle Scholar |

Tuesca D, Alzugaray C, Scarafiocca M, Barberis IM (2006) Efecto de la calidad de la luz y la escarificación sobre la germinación de semillas de Bromelia serra Griseb. In ‘VIII Congreso y XXVI Reunión Anual de la Sociedad de Biología de Rosario’, 5–7 December 2006, Rosario, Argentina. p. 60. (Sociedad de Biología de Rosario: Rosario, Argentina)

Ulloa Ulloa C, Acevedo-Rodríguez P, Beck S, Belgrano MJ, Bernal R, Berry PE, Brako L, Celis M, Davidse G, Forzza RC, Gradstein SR, Hokche O, León B, León-Yánez S, Magill RE, Neill DA, Nee M, Raven PH, Stimmel H, Strong MT, Villaseñor JL, Zarucchi JL, Zuloaga FO, Jørgensen PM (2017) An integrated assessment of the vascular plant species of the Americas. Science 358, 1614–1617.
An integrated assessment of the vascular plant species of the Americas.Crossref | GoogleScholarGoogle Scholar |

Vayda K, Donohue K, Auge GA (2018) Within- and trans-generational plasticity: seed germination responses to light quantity and quality. AoB Plants 10, ply023
Within- and trans-generational plasticity: seed germination responses to light quantity and quality.Crossref | GoogleScholarGoogle Scholar |

Vieira DCM, Socolowski F, Takaki M (2007) Germinação de sementes de Dyckia tuberosa (Vell.) Beer (Bromeliaceae) sob diferentes temperaturas em luz e escuro. Brazilian Journal of Botany 30, 183–188.
Germinação de sementes de Dyckia tuberosa (Vell.) Beer (Bromeliaceae) sob diferentes temperaturas em luz e escuro.Crossref | GoogleScholarGoogle Scholar |

Villegas AC (2001) Spatial and temporal variability in clonal reproduction of Aechmea magdalenae, a tropical understory herb. Biotropica 33, 48–59.
Spatial and temporal variability in clonal reproduction of Aechmea magdalenae, a tropical understory herb.Crossref | GoogleScholarGoogle Scholar |

Vleeshouwers LM, Bouwmeester HJ, Karssen CM (1995) Redefining seed dormancy: an attempt to integrate physiology and ecology. Journal of Ecology 83, 1031–1037.
Redefining seed dormancy: an attempt to integrate physiology and ecology.Crossref | GoogleScholarGoogle Scholar |

Wagner K, Bogusch W, Zotz G (2013) The role of the regeneration niche for the vertical stratification of vascular epiphytes. Journal of Tropical Ecology 29, 277–290.
The role of the regeneration niche for the vertical stratification of vascular epiphytes.Crossref | GoogleScholarGoogle Scholar |

Wainwright CE, Cleland EE (2013) Exotic species display greater germination plasticity and higher germination rates than native species across multiple cues. Biological Invasions 15, 2253–2264.
Exotic species display greater germination plasticity and higher germination rates than native species across multiple cues.Crossref | GoogleScholarGoogle Scholar |

Winkler M, Hülber K, Hietz P (2005) Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest. Annals of Botany 95, 1039–1047.
Effect of canopy position on germination and seedling survival of epiphytic bromeliads in a Mexican humid montane forest.Crossref | GoogleScholarGoogle Scholar |

Winkler M, Hulber K, Hietz P (2007) Population dynamics of epiphytic bromeliads: Life strategies and the role of host branches. Basic and Applied Ecology 8, 183–196.

Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) ‘Mixed effects models and extensions in ecology with R.’ (Springer: New York, NY, USA)