Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH ARTICLE (Open Access)

Diverse impact of 2023 El Niño on weather patterns over the Indonesian Maritime Continent

Sanaullah Zehri https://orcid.org/0009-0008-1971-5651 A , Erma Yulihastin https://orcid.org/0000-0001-5327-7597 B * , Fiolenta Marpaung https://orcid.org/0000-0002-3781-1996 B , Agung Adiputra A , Mushoddik https://orcid.org/0009-0006-8718-1706 A , Narizka Nanda Purwadani https://orcid.org/0000-0001-9122-8227 B C and Gammamerdianti B
+ Author Affiliations
- Author Affiliations

A Pendidikan Geografi, Universitas Muhammadiyah Prof. Dr Hamka, Jakarta, Indonesia.

B Pusat Riset Iklim dan Atmosfer, Badan Riset dan Inovasi Nasional (BRIN), Jakarta, Indonesia.

C Program Studi Sains Kebumian, Institut Teknologi Bandung, Bandung, Indonesia.

* Correspondence to: erma.yulihastin@brin.go.id

Handling Editor: Eun-Pa Lim

Journal of Southern Hemisphere Earth Systems Science 75, ES25005 https://doi.org/10.1071/ES25005
Submitted: 24 January 2025  Accepted: 21 May 2025  Published: 27 June 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Bureau of Meteorology. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

The El Niño–Southern Oscillation (ENSO) significantly affects climate extremes, particularly causing the driest conditions across the Indonesian Maritime Continent (IMC). However, the specific impacts of the 2023 ENSO on weather pattern anomalies in the IMC have not been thoroughly explored. This study examines the 2023 El Niño, one of the strongest El Niño conditions during the warmest climate decade, and its effects on weather anomalies (i.e. hot and humid) to fill gaps in our understanding of the diverse impacts of ENSO in the IMC. Composite analysis (1991–2023) from the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5) and National Oceanic and Atmospheric Administration datasets demonstrated that the 2023 El Niño strengthened westerly winds across the Pacific Ocean and influenced intraseasonal rainfall patterns over the IMC. Distinct contrasts were observed between northern (DOM1) and southern (DOM2) IMC. During the onset and mature periods of El Niño (April–September 2023), DOM2 experienced reduced rainfall and significant drought, especially during the dry season (June–September 2023), affecting vital agricultural regions in Java and southern Sumatra. The positive Indian Ocean Dipole and vigorous Australian monsoon likely intensified this drought. Conversely, DOM1 experienced increased rainfall, triggering severe flood events in several regions in Sumatra and Kalimantan (i.e. northern Sumatra and western, northern and central Kalimantan). Our findings highlighted that the enhanced rainfall, driven by middle and high cloud activities, is linked to ENSO and South China Sea warming. This study deepens our understanding of the varied impacts of El Niño on intraseasonal weather patterns in Indonesia, ultimately aiding in improving sub-seasonal-to-seasonal climate predictions over the IMC.

Keywords: cloud distribution, El Niño, Indian Ocean Dipole, Indonesian Maritime Continent, intraseasonal variability, rainfall, water vapour, weather pattern, westerly winds.

References

Admin BPBD (2023) Diguyur Hujan, 7 Daerah Sumbar Dilanda Banjir [Rain showered, 7 areas of West Sumatra hit by floods]. In BPBD Provinsi Sumatera Barat, 29 July 2023. Available at https://bpbd.sumbarprov.go.id/home/news/346-diguyur-hujan-7-daerah-sumbar-dilanda-banjir [In Bahasa Indonesia, verified 24 January 2025]

Aldrian E, Susanto RD (2003) Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology 23, 1435-1452.
| Crossref | Google Scholar |

Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. Journal of Climate 15, 2205-2231.
| Crossref | Google Scholar |

An S-I, Tziperman E, Okumura YM, Li T (2020) ENSO irregularity and asymmetry. In ‘El Niño–Southern Oscillation in a Changing Climate’. (Eds MJ McPhaden, A Santoso, W Cai) pp. 153–172. (American Geophysical Union, AGU) 10.1002/9781119548164.ch7

As-syakur AR, Osawa T, Miura F, Nuarsa IW, Ekayanti NW, Dharma IGBS, Adnyana IWS, Arthana IW, Tanaka T (2016) Maritime Continent rainfall variability during the TRMM era: the role of monsoon, topography and El Niño Modoki. Dynamics of Atmospheres and Oceans 75, 58-77.
| Crossref | Google Scholar |

Avia LQ, Sofiati I (2018) Analysis of El Niño and IOD phenomenon 2015/2016 and their impact on rainfall variability in Indonesia. IOP Conference Series: Earth and Environmental Science 166, 012034.
| Crossref | Google Scholar |

Badan Penanggulangan Bencana Daerah Kab Kapuas Hulu (2023) Banjir Melanda Tiga Desa di Kecamatan Batang Lupar Kabupaten Kapuas Hulu [Flooding hits three villages in Batang Lupar District, Kapuas Hulu Regency]. In Info Kapuas Hulu, 10 July 2023. Available at https://info.kapuashulukab.go.id/2023/07/10/banjir-melanda-tiga-desa-di-kecamatan-batang-lupar-kabupaten-kapuas-hulu/ [In Bahasa Indonesia, verified 24 January 2025]

Boucharel J, Dewitte B, du Penhoat Y, Garel B, Yeh S-W, Kug J-S (2011) ENSO nonlinearity in a warming climate. Climate Dynamics 37, 2045-2065.
| Crossref | Google Scholar |

Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin F-F (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change 4, 111-116.
| Crossref | Google Scholar |

Cai W, Santoso A, Wang G, Yeh S-W, An S-I, Cobb KM, Collins M, Guilyardi E, Jin F-F, Kug J-S, Lengaigne M, McPhaden MJ, Takahashi K, Timmermann A, Vecchi G, Watanabe M, Wu L (2015) ENSO and greenhouse warming. Nature Climate Change 5, 849-859.
| Crossref | Google Scholar |

Carreric A (2019) La diversité d’ENSO et le changement climatique. ENSO diversity and global warming. PhD thesis, Université Paul Sabatier-Toulouse III, Toulouse, France. Available at https://theses.hal.science/tel-02942708/ [In French and English, verified 24 January 2025]

Chang C-P, Harr PA, Chen H-J (2005a) Synoptic disturbances over the equatorial South China Sea and Western Maritime Continent during boreal winter. Monthly Weather Review 133, 489-503.
| Crossref | Google Scholar |

Chang C-P, Wang Z, McBride J, Liu C-H (2005b) Annual cycle of Southeast Asia–Maritime Continent rainfall and the asymmetric monsoon transition. Journal of Climate 18, 287-301.
| Crossref | Google Scholar |

Chen M, Yu JY, Wang X, Jiang W (2019) The changing impact mechanisms of a diverse El Niño on the Western Pacific subtropical high. Geophysical Research Letters 46(2), 953-962.
| Crossref | Google Scholar |

Chen S, Chen W, Yu B, Wu R, Graf H-F, Chen L (2023) Enhanced impact of the Aleutian Low on increasing the Central Pacific ENSO in recent decades. npj Climate and Atmospheric Science 6, 29.
| Crossref | Google Scholar |

Didier N (2015) Comparison of spatial and temporal cloud coverage derived from CloudSat, CERES, ISCCP and their relationship with precipitation over Africa. American Journal of Remote Sensing 3, 17-28.
| Crossref | Google Scholar |

Geng X, Kug J-S, Shin N-Y, Zhang W, Chen H-C (2024) On the spatial double peak of the 2023–2024 El Niño event. Communications Earth & Environment 5, 691.
| Crossref | Google Scholar |

Hendon HH (2003) Indonesian rainfall variability: impacts of ENSO and local air–sea interaction. Journal of Climate 16, 1775-1790.
| Crossref | Google Scholar |

Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J-N (2020) The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999-2049.
| Crossref | Google Scholar |

Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Rozum I, Schepers D, Simmons A, Soci C, Dee D, Thépaut J-N (2023) ERA5 monthly averaged data on single levels from 1940 to present. (Copernicus Climate Change Service, C3S, and Climate Data Store, CDS) [Dataset] doi:10.24381/cds.f17050d7

Jiang N, Zhu C, Hu Z-Z, McPhaden MJ, Chen D, Liu B, Ma S, Yan Y, Zhou T, Qian W, Luo J, Yang X, Liu F, Zhu Y (2024) Enhanced risk of record-breaking regional temperatures during the 2023–24 El Niño. Scientific Reports 14, 2521.
| Crossref | Google Scholar | PubMed |

Juneng L, Tangang FT (2005) Evolution of ENSO-related rainfall anomalies in Southeast Asia region and its relationship with atmosphere–ocean variations in Indo-Pacific sector. Climate Dynamics 25, 337-350.
| Crossref | Google Scholar |

Keenan TD, Morton BR, Manton MJ, Holland GJ (1989) The Island Thunderstorm Experiment (ITEX) – a study of tropical thunderstorms in the maritime continent. Bulletin of the American Meteorological Society 70, 152-159.
| Crossref | Google Scholar |

Leung JC-H, Zhang B, Gan Q, Wang L, Qian W, Hu Z-Z (2022) Differential expansion speeds of Indo-Pacific warm pool and deep convection favoring pool under greenhouse warming. npj Climate and Atmospheric Science 5, 97.
| Crossref | Google Scholar |

Loeb NG, Kato S, Su W, Wong T, Rose FG, Doelling DR, Norris JR, Huang X (2012) Advances in understanding top-of-atmosphere radiation variability from satellite observations. Surveys in Geophysics 33, 359-385.
| Crossref | Google Scholar |

Love BS, Matthews AJ, Lister GMS (2011) The diurnal cycle of precipitation over the Maritime Continent in a high‐resolution atmospheric model. Quarterly Journal of the Royal Meteorological Society 137, 934-947.
| Crossref | Google Scholar |

Loyola D, Valks P, Ruppert T, Richter A, Wagner T, Thomas W, van der A R, Meisner R (2006) The 1997 El Niño impact on clouds, water vapour, aerosols and reactive trace gases in the troposphere, as measured by the Global Ozone Monitoring Experiment. Advances in Geosciences 6, 267-272.
| Crossref | Google Scholar |

McPhaden MJ, Zhang X (2009) Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophysical Research Letters 36, L13703.
| Crossref | Google Scholar |

Moron V, Robertson AW, Qian J-H, Ghil M (2015) Weather types across the Maritime Continent: from the diurnal cycle to interannual variations. Frontiers in Environmental Science 2, 65.
| Crossref | Google Scholar |

Moron V, Robertson AW, Wang L (2019) Weather within climate: sub-seasonal predictability of tropical daily rainfall characteristics. In ‘Sub-Seasonal to Seasonal Prediction’. (Eds AW Robertson, F Vitart) pp. 47–64. (Elsevier) 10.1016/B978-0-12-811714-9.00003-6

Mulyana E (2002) Analisis Angin Zonal di Indonesia selama Periode ENSO [Analysis of zonal winds in Indonesia during the ENSO period]. Jurnal Sains & Teknologi Modifikasi Cuaca 3, 115-120 [In Bahasa Indonesia, with abstract in Bahasa and English].
| Google Scholar |

Neelin JD, Battisti DS, Hirst AC, Jin F-F, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. Journal of Geophysical Research: Oceans 103, 14261-14290.
| Crossref | Google Scholar |

Peng Q, Xie S-P, Passalacqua GA, Miyamoto A, Deser C (2024) The 2023 extreme coastal El Niño: atmospheric and air–sea coupling mechanisms. Science Advances 10, eadk8646.
| Crossref | Google Scholar | PubMed |

Philip S, Van Oldenborgh GJ (2006) Shifts in ENSO coupling processes under global warming. Geophysical Research Letters 33, 2006GL026196.
| Crossref | Google Scholar |

Qian J-H, Robertson AW, Moron V (2010) Interactions among ENSO, the monsoon, and diurnal cycle in rainfall variability over Java, Indonesia. Journal of the Atmospheric Sciences 67, 3509-3524.
| Crossref | Google Scholar |

Raghuraman SP, Soden B, Clement A, Vecchi G, Menemenlis S, Yang W (2024) The 2023 global warming spike was driven by the El Niño–Southern Oscillation. Atmospheric Chemistry and Physics 24, 11275-11283.
| Crossref | Google Scholar |

Ramadhan DNS (2023) Banjir telah berdampak pada 3.052 keluarga di Nunukan [Flooding has affected 3052 households in Nunukan]. In Antara News, 26 September 2023. Available at https://www.antaranews.com/berita/3743829/banjir-telah-berdampak-pada-3052-keluarga-di-nunukan [In Bahasa Indonesia, verified 24 January 2025]

Ray A, Rakshit S, Basak GK, Dana SK, Ghosh D (2020) Understanding the origin of extreme events in El Niño–Southern Oscillation. Physical Review E 101, 062210.
| Crossref | Google Scholar | PubMed |

Robertson AW, Moron V, Qian J-H, Chang C-P, Tangang F, Aldrian E, Koh TY, Liew J (2011) The maritime continent monsoon. In ‘World Scientific Series on Asia–Pacific Weather and Climate. Volume 5. The Global Monsoon System: Research and Forecast’. (Eds CP Chang, Y Ding, NC Lau, RH Johnson, B Wang, T Yasunari) pp. 85–98. (World Scientific) 10.1142/9789814343411_0006

Satyawardhana H, Yulihastin E (2016) Interaksi El-Nino, Monsun dan Topografi Lokal Terhadap Anomali Curah Hujan di Pulau Jawa [Interaction of El Niño, monsoon and local topography on rain anomalies in Java Island]. In ‘Fisika, Dinamika, dan Lingkungan Atmosfer Indonesia’. pp. 59–74. (Buku Ilmiah PSTA LAPAN) [In Bahasa Indonesia, with abstract in Bahasa and English]

Tan W, Wang X, Wang W, Wang C, Zuo J (2016) Different responses of sea surface temperature in the South China Sea to various El Niño events during boreal autumn. Journal of Climate 29, 1127-1142.
| Crossref | Google Scholar |

Triwibowo DR (2023) Banjir Landa Empat Kabupaten di Kalteng, Kerusakan Alam Jadi Pemicu [Four regencies in Central Kalimantan were hit by flooding, and natural losses were the cause]. In Kompas, 2 April 2023. Available at https://www.kompas.id/baca/nusantara/2023/04/02/banjir-landa-empat-kabupaten-di-kalteng-kerusakan-alam-jadi-pemicu [In Bahasa Indonesia, verified 24 January 2025]

Wallace JM, Rasmusson EM, Mitchell TP, Kousky VE, Sarachik ES, Von Storch H (1998) On the structure and evolution of ENSO‐related climate variability in the tropical Pacific: lessons from TOGA. Journal of Geophysical Research: Oceans 103, 14241-14259.
| Crossref | Google Scholar |

Wang H, Su W (2015) The ENSO effects on tropical clouds and top‐of‐atmosphere cloud radiative effects in CMIP5 models. Journal of Geophysical Research: Atmospheres 120, 4443-4465.
| Crossref | Google Scholar |

Wang C, Deser C, Yu J-Y, DiNezio P, Clement A (2017) El Niño and Southern Oscillation (ENSO): a review. In ‘Coral Reefs of the Eastern Tropical Pacific: Persistence and Loss in a Dynamic Environment’. (Eds PW Glynn, DP Manzello, IC Enochs) pp. 85–106. (Springer: Dordrecht, Netherlands) 10.1007/978-94-017-7499-4_4

Watterson IG (2020) Australian rainfall anomalies in 2018–2019 Linked to Indo-Pacific driver indices using ERA5 reanalyses. Journal of Geophysical Research: Atmospheres 125(17), e2020JD033041.
| Crossref | Google Scholar |

Wong T, Wielicki BA, Lee RB, Smith GL, Bush KA, Willis JK (2006) Reexamination of the observed decadal variability of the earth radiation budget using altitude-corrected ERBE/ERBS nonscanner WFOV data. Journal of Climate 19, 4028-4040.
| Crossref | Google Scholar |

Wu X, Okumura YM, Deser C, DiNezio PN (2021) Two-year dynamical predictions of ENSO event duration during 1954–2015. Journal of Climate 34, 4069-4087.
| Crossref | Google Scholar |

Yamanaka MD (2016) Physical climatology of Indonesian maritime continent: an outline to comprehend observational studies. Atmospheric Research 178–179, 231-259.
| Crossref | Google Scholar |

Yeo S-R, Kim K-Y (2014) Global warming, low-frequency variability, and biennial oscillation: an attempt to understand the physical mechanisms driving major ENSO events. Climate Dynamics 43, 771-786.
| Crossref | Google Scholar |

Yulihastin E, Nuryanto DE, Trismidianto , Muharsyah R (2021) Improvement of heavy rainfall simulated with SST adjustment associated with mesoscale convective complexes related to severe flash flood in Luwu, Sulawesi, Indonesia. Atmosphere 12, 1445.
| Crossref | Google Scholar |