The Australian wave forecast system with statistical wind correction
Stefan Zieger
A
Handling Editor: Anthony Rea
Abstract
The Bureau of Meteorology (the Bureau) has an important role in providing marine services around Australia and its oceans. These services strongly depend on guidance from numerical wave models, which depend on numerical weather and ocean prediction systems. The Bureau has upgraded its collective suite of all numerical models to the Australian Parallel Suite (APS) 4. The APS systems have vastly improved their skill because of increased resolution, enhanced data assimilation (including increasing numbers and types of observations) and improvements in physical parameterisations. This paper verifies the skill of the numerical weather prediction model and the underlying wave model using observations from satellite systems and wave buoys. The characteristics of the surface winds led to the development of a statistical wind correction (i.e. bias correction) that superseded the flux-scaling applied in the APS3 version. Comparisons to the legacy wave model and the European Centre for Medium-Range Weather Forecast reanalysis ERA5 indicate that the Bureau’s global wave forecast system outperforms both across a few metrics. Satellite altimetry verification shows an improvement in root-mean-square error, variability, probability of exceedance and probability density function. Wave buoy verification around Australia agrees with the skill assessment from satellite altimeters. Looking at the root-mean-square error of significant wave height, there is an estimated mean error of 0.29 m for altimeter observations and across 84 wave buoy locations.
Keywords: AUSWAVE, ERA5, ST6, wave forecasting, wave model, wave verification, WAVEWATCH III, wind bias correction.
References
Alday M, Accensi M, Ardhuin F, Dodet G (2021) A global wave parameter database for geophysical applications. Part 3: improved forcing and spectral resolution. Ocean Modelling 166, 101848.
| Crossref | Google Scholar |
Ardhuin F, Rogers E, Babanin A V, Filipot J-F, Magne R, Roland A, Van der Westhuysen A, Queffeulou P, Lefevre J-M, Aouf L, Collard F (2010) Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. Journal of Physical Oceanography 40(9), 1917-1941.
| Crossref | Google Scholar |
Brassington GB, Pugh T, Spillman C, Schulz E, Beggs H, Schiller A, Oke PR (2007) BLUElink: development of operational oceanography and servicing in Australia. Journal of Research and Practice in Information Technology 39(2), 151-162.
| Google Scholar |
Breivik Ø, Carrasco A, Haakenstad H, Aarnes OJ, Behrens A, Bidlot JR, Björkqvist JV, Bohlinger P, Furevik BR, Staneva J, Reistad M (2022) The impact of a reduced high-wind charnock parameter on wave growth with application to the North Sea, the Norwegian Sea, and the Arctic Ocean. Journal of Geophysical Research: Oceans 127(3), e2021JC018196.
| Crossref | Google Scholar |
Cardone VJ, Jensen RE, Resio DT, Swail VR, Cox AT (1996) Evaluation of contemporary ocean wave models in rare extreme events: the “Halloween Storm” of October 1991 and the “Storm of the Century” of March 1993. Journal of Atmospheric and Oceanic Technology 13(1), 198-230.
| Crossref | Google Scholar |
Durrant TH, Greenslade DJM, Simmonds I (2013) The effect of statistical wind corrections on global wave forecasts. Ocean Modelling 70, 116-131.
| Crossref | Google Scholar |
Edson JB, Jampana V, Weller RA, Bigorre SP, Plueddemann AJ, Fairall CW, Miller SD, Mahrt L, Vickers D, Hersbach H (2013) On the exchange of momentum over the open ocean. Journal of Physical Oceanography 43(8), 1589-1610.
| Crossref | Google Scholar |
Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. Journal of Climate 16(4), 571-591.
| Crossref | Google Scholar |
Gandoin R, Garza J (2024) Underestimation of strong wind speeds offshore in ERA5: evidence, discussion and correction. Wind Energy Science 9(8), 1727-1745.
| Crossref | Google Scholar |
GEBCO Bathymetric Compilation Group (2020) The GEBCO_2020 Grid – a continuous terrain model of the global oceans and land. (British Oceanographic Data Centre, National Oceanography Centre, NERC, UK) [Dataset] 10.5285/a29c5465-b138-234d-e053-6c86abc040b9
Hasselmann K (1960) Grundgleichungen der Seegangsvoraussage. Schiffstechnik 7(39), 191-195 [In German].
| Google Scholar |
Hasselmann S, Hasselmann K, Allender JH, Barnett TP (1985) Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography 15(11), 1378-1391.
| Crossref | Google Scholar |
Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut JN (2020) The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146(730), 1999-2049.
| Crossref | Google Scholar |
Hwang PA (2011) A note on the ocean surface roughness spectrum. Journal of Atmospheric and Oceanic Technology 28(3), 436-443.
| Crossref | Google Scholar |
Janssen PAEM (1991) Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography 21(11), 1631-1642.
| Crossref | Google Scholar |
Janssen P (1998) On error growth in wave models. ECMWF Technical Memoranda 249, 12.
| Crossref | Google Scholar |
Janssen PAEM, Bidlot JR (2018) Progress in operational wave forecasting. Procedia IUTAM 26, 14-29.
| Crossref | Google Scholar |
Liu Q, Rogers WE, Babanin A V, Young IR, Romero L, Zieger S, Qiao F, Guan C (2019) Observation-based source terms in the third-generation wave model WAVEWATCH III: updates and verification. Journal of Physical Oceanography 49(2), 489-517.
| Crossref | Google Scholar |
Liu Q, Babanin A V, Rogers WE, Zieger S, Young IR, Bidlot JR, Durrant T, Ewans K, Guan C, Kirezci C, Lemos G, MacHutchon K, Moon IJ, Rapizo H, Ribal A, Semedo A, Wang J (2021) Global wave hindcasts using the observation-based source terms: description and validation. Journal of Advances in Modeling Earth Systems 13(8), e2021MS002493.
| Crossref | Google Scholar |
Meucci A, Young IR, Pepler A, Rudeva I, Ribal A, Bidlot JR, Babanin A V (2023) Evaluation of spectral wave models physics as applied to a 100-year Southern Hemisphere extra-tropical cyclone sea state. Journal of Geophysical Research: Oceans 128(9), e2023JC019751.
| Crossref | Google Scholar |
National Operations Centre (2020) APS3 upgrade of the ACCESS-G/GE Numerical Weather Prediction system, Bureau Operational Bulleting number 125. (Bureau of Meteorology: Melbourne, Vic., Australia) Available at http://www.bom.gov.au/australia/charts/bulletins/opsbull_G3GE3_external_v3.pdf
Oladejo HO, Bernstein DN, Cambazoglu MK, Nechaev D, Abdolali A, Wiggert JD (2025) Wind forcing, source term and grid optimization for hurricane wave modelling in the Gulf of Mexico. Coastal Engineering 197, 104692.
| Crossref | Google Scholar |
Pathirana S, Young I, Meucci A (2023) Modelling swell propagation across the Pacific. Frontiers in Marine Science 10, 1187473.
| Crossref | Google Scholar |
Rogers WE, Wittmann PA, Wang DWC, Clancy RM, Hsu YL (2005) Evaluation of global wave prediction at the fleet numerical meteorology and oceanography center. Weather and Forecasting 20, 745-760.
| Crossref | Google Scholar |
Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou Y-T, Chuang H-Y, Iredell M, Ek M, Meng J, Yang R, Mendez MP, van den Dool H, Zhang Q, Wang W, Chen M, Becker E (2014) The NCEP climate forecast system version 2. Journal of Climate 27(6), 2185-2208.
| Crossref | Google Scholar |
Schulz EW, Josey SA, Verein R (2012) First air–sea flux mooring measurements in the Southern Ocean. Geophysical Research Letters 39(16), L16606.
| Crossref | Google Scholar |
Soloviev A V, Lukas R, Donelan MA, Haus BK, Ginis I (2014) The air–sea interface and surface stress under tropical cyclones. Scientific Reports 4, 5306.
| Crossref | Google Scholar | PubMed |
Stopa JE, Ardhuin F, Babanin A, Zieger S (2016) Comparison and validation of physical parameterizations in spectral wave models. Ocean Modelling 103, 2-17.
| Crossref | Google Scholar |
Swain MJ, Ballard DH (2002) Color indexing. In ‘Readings in Multimedia Computing and Networking’. (Eds K Jeffay, N Zhang) pp. 265–277. (Elsevier) 10.1016/B978-155860651-7/50109-1
Thomson J, D’Asaro EA, Cronin MF, Rogers WE, Harcourt RR, Shcherbina A (2013) Waves and the equilibrium range at Ocean Weather Station P. Journal of Geophysical Research: Oceans 118(11), 5951-5962.
| Crossref | Google Scholar |
Tolman HL (1998) Validation of NCEPs ocean winds for the use in wind wave models. Global Atmosphere and Ocean System 6, 243-268.
| Google Scholar |
Tolman HL, Balasubramaniyan B, Burroughs LD, Chalikov D V, Chao YY, Chen HS, Gerald VM (2002) Development and implementation of wind-generated ocean surface wave models at NCEP. Weather and Forecasting 17(2), 311-333.
| Crossref | Google Scholar |
Tolman HL, Banner ML, Kaihatu JM (2013) The NOPP operational wave model improvement project. Ocean Modelling 70, 2-10.
| Crossref | Google Scholar |
Valiente NG, Saulter A, Edwards JM, Lewis HW, Sanchez JMC, Bruciaferri D, Bunney C, Siddorn J (2021) The impact of wave model source terms and coupling strategies to rapidly developing waves across the north‐west European shelf during extreme events. Journal of Marine Science and Engineering 9(4), 403.
| Crossref | Google Scholar |
Valiente NG, Saulter A, Gomez B, Bunney C, Li JG, Palmer T, Pequignet C (2023) The Met Office operational wave forecasting system: the evolution of the regional and global models. Geoscientific Model Development 16(9), 2515-2538.
| Crossref | Google Scholar |
Wiese A, Staneva J, Ho-Hagemann HTM, Grayek S, Koch W, Schrum C (2020) Internal model variability of ensemble simulations with a regional coupled wave–atmosphere model GCOAST. Frontiers in Marine Science 7, 596843.
| Crossref | Google Scholar |
Young IR, Babanin AV, Zieger S (2013) The decay rate of ocean swell observed by altimeter. Journal of Physical Oceanography 43(11), 2322-2333.
| Crossref | Google Scholar |
Young IR, Ribal A (2022) Can multi-mission altimeter datasets accurately measure long-term trends in wave height? Remote Sensing 14(4), 974.
| Crossref | Google Scholar |
Zieger S, Greenslade D (2021) A multiple-resolution global wave model – AUSWAVE-G3, Bureau Research Report Number 51. (Bureau of Meteorology: Melbourne, Vic., Australia) Available at http://www.bom.gov.au/research/publications/researchreports/BRR-051.pdf
Zieger S, Babanin AV, Rogers WE, Young IR (2015) Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling 96, 2-25.
| Crossref | Google Scholar |