Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Multilevel genomics analysis of carbon signalling during low carbon availability: coordinating the supply and utilisation of carbon in a fluctuating environment

Mark Stitt A B , Yves Gibon A , John E. Lunn A and Maria Piques A
+ Author Affiliations
- Author Affiliations

A Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14424 Golm, Germany.

B Corresponding author. Email: mstitt@mpimp-golm.mpg.de

C This paper originates from a presentation at the 8th International Congress of Plant Molecular Biology, Adelaide, Australia, August 2006.

Functional Plant Biology 34(6) 526-549 https://doi.org/10.1071/FP06249
Submitted: 30 October 2006  Accepted: 6 December 2006   Published: 1 June 2007

Abstract

Plants alternate between a net surplus of carbon in the light and a net deficit at night. This is buffered by accumulating starch in the light and degrading it at night. Enough starch is accumulated to support degradation throughout the night, with a small amount remaining at the end of the 24-h diurnal cycle. This review discusses how this balance between the supply and utilisation of carbon is achieved in Arabidopsis. It is important to regulate starch turnover to avoid an acute carbon deficiency. A 2–4 h extension of the night leads to exhaustion of starch, a collapse of sugars, a switch from biosynthesis to catabolism and an acute inhibition of growth by low carbon, which is not immediately reversed when carbon becomes available again. In starchless pgm mutants, where sugars are depleted each night, this leads to a recurring inhibition of growth that is not reversed until 5–6 h into the following light period. Several lines of evidence show that starch accumulation is regulated in response to events that are initiated during periods of low carbon. Starch accumulation is decreased when small amounts of sucrose are included in the growth medium. Sets of sugar-responsive genes were identified by supplying sugars to carbon-starved seedlings, or by illuminating 5-week-old plants in the presence of 350 or 50 ppm [CO2]. Almost all of these genes show large diurnal changes in starchless pgm mutants, which are driven by the depletion of carbon during the night. Many show significant diurnal changes in wild type plants, showing that ‘anticipatory’ changes in signalling pathways occur before acute carbon limitation develops. However, these diurnal changes of transcripts do not lead to immediate changes of enzyme activities. Whereas an extension of the night leads to major changes of transcripts within 4–6 h, changes in enzyme activities require several days. In pgm, enzyme activities and the levels of >150 metabolites resemble those found in wild type plants after several days in the dark. It is concluded that diurnal changes in transcript levels are integrated, over days, as changes in the levels of enzymes. We hypothesise that this facilitates an adjustment of metabolism to a mid-term shift in the conditions, while ignoring noise due to diurnal changes and day-to-day fluctuations. The rapid adjustment of starch synthesis after a period of acute carbon depletion is a consequence of the transient inhibition of growth. This leads to accumulation of sugars when carbon becomes available again, which triggers a large increase in trehalose-6-phosphate. This signal metabolite promotes thioredoxin-dependent post-translational activation of ADP glucose pyrophosphorylase. Mid-term acclimation to a decreased carbon supply may be mediated by a combination of post-translational regulation, longer-term changes in enzyme activities, and a decrease in the rate of growth.

Additional keywords: Arabidopsis, diurnal, enzyme activities, expression arrays, growth, metabolite profile, starch, sucrose, sugars.


Acknowledgements

We acknowledge the contributions of Oliver Bläsing, Björn Usadel, Oliver Thimm, Daniel Osuna, Wolf-Rüdiger Scheible, Rosa Morcuende, Melanie Höhne, Manuela Günter, Uschi Krause and Regina Feil to the research described in this review. The concept of ‘acclimatory’ responses was developed in discussion with Alison Smith, Nick Harberd, Gerrit Beemster and Dirk Inzé. The research described in this review was supported by the BMBF (GABI-Gauntlets) and the Max Planck Society. The work was supported by the Max-Planck-Society and the BMBF-funded project GABI Verbund Arabidopsis III ‘Gauntlets, Carbon and Nutrient Signalling: Test Systems, and Metabolite and Transcript Profiles’ (0312277A).


References


Ainsworth EA, Long SP (2005) What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist 165, 351–372.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Arp WJ (1991) Effects of source-sink relations on photosynthetic acclimation to elevated carbon dioxide. Plant, Cell & Environment 14, 869–876.
Crossref | GoogleScholarGoogle Scholar | open url image1

Aubert S, Gout E, Bligny R, Marty-Mazars D, Barrieu F, Alabouvette J, Marty F, Douce R (1996) Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to C deprivation, control by the supply of mitochondria with respiratory substrates. Journal of Cell Biology 133, 1251–1263.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Avonce N, Leyman B, Mascorro-Gallardo J, van Dijck P, Thevelein JM, Iturriaga G (2004) The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signalling. Plant Physiology 136, 3649–3659.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ballicora MA, Frueauf JB, Fu Y, Schürmann P, Preiss J (2000) Activation of the potato tuber ADP glucose pyrophophorylase by thioredoxin. Journal of Biological Chemistry 275, 1315–1320.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ballicora MA, Iglesias AA, Preiss J (2004) ADP-Glucose pyrophosphorylase; a regulatory enzyme for plant starch synthesis. Photosynthesis Research 79, 1–24.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Balmer Y, Koller A, del Val G, Manieri W, Schürmann P, Buchanan BB (2003) Proteomics gives insight into the regulatory function of chloroplast thioredoxins. Proceedings of the National Academy of Sciences USA 100, 370–375.
Crossref | GoogleScholarGoogle Scholar | open url image1

Balmer Y, Vensel WH, Tanaka CK, Hurkman WJ, Gelhaye E , et al. (2004) Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria. Proceedings of the National Academy of Sciences USA 101, 2642–2647.
Crossref | GoogleScholarGoogle Scholar | open url image1

Balmer Y, Vensel WH, Fu Y, Schurmann P, Hurkman WJ, Buchanan BB (2006) A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proceedings of the National Academy of Sciences USA 103, 2988–2993.
Crossref | GoogleScholarGoogle Scholar | open url image1

Baunsgaard L, Lutken H, Mikkelsen R, Glaring MA, Pham TT, Blennow A (2005) A novel isoform of glucan, water dikinase phosphorylates pre-phosphotrylated alpha-glucans and is involved in starch degradation in Arabidopsis. The Plant Journal 41, 595–605.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Beemster GTS, Baskin TI (1998) Analysis of cell division and elongation underlying the developmental acceleration of root growth in Arabidopsis thaliana. Plant Physiology 116, 1515–1526.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bläsing OE, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible W-R, Stitt M (2005) Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis. The Plant Cell 17, 3257–3281.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Blázquez MA, Lagunas R, Gancedo C, Gancedo J (1993) Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Letters 329, 51–54.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Bonini BM, van Dijck P, Thevelein JM (2003) Uncoupling of the glucose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe. Biochimica et Biophysica Acta 1606, 83–93.
Crossref | PubMed |
open url image1

Boyle MG, Boyer JS, Morgan PW (1991) Stem infusion of liquid culture medium prevents reproductive failure of maize at low water potential. Crop Science 31, 1246–1252. open url image1

Brouquisse R, James F, Raymond P, Pradet A (1991) Study of glucose starvation in excised maize root tips. Plant, Cell & Environment 96, 619–626. open url image1

Buchanan BB (1980) Role of light in the regulation of chloroplast enzymes. Annual Review of Plant Physiology 31, 341–374.
Crossref | GoogleScholarGoogle Scholar | open url image1

Buchanan BB, Balmer Y (2005) Redox regulation, a broadening horizon. Annual Review of Plant Biology 56, 187–220.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cabib E, Leloir LF (1958) The biosynthesis of trehalose phosphate. Journal of Biological Chemistry 231, 259–275.
PubMed |
open url image1

Caspar T, Huber SC, Somerville CR (1985) Alterations in growth, photosynthesis and respiration in a starch deficient mutant of Arabidopsis thaliana (L.) Heynh deficient in chloroplast phosphoglucomutase. Plant Physiology 79, 11–17.
PubMed |
open url image1

Chatterton NJ, Silvius JE (1979) Photosynthate partitioning into starch in soybean leaves, effects of photoperiod versus photosynthetic period duration. Plant Physiology 64, 749–753.
PubMed |
open url image1

Chatterton NJ, Silvius JE (1980) Photosynthate partitioning as affected by daily photosynthetic period duration in six species. Physiologia Plantarum 49, 141–144.
Crossref | GoogleScholarGoogle Scholar | open url image1

Chatterton NJ, Silvius JE (1981) Photosynthate partitioning into starch in soybean leaves: irradiance level and daily photosynthetic period duration effects. Plant Physiology 67, 257–260.
PubMed |
open url image1

Cheng WH, Talierco EW, Chourey PS (1999) Sugars modulate an unusual mode of control of cell wall invertase (Incw1) throught its 3′ untransalted region in a cell suspension culture of maize. Proceedings of the National Academy of Sciences USA 96, 10 512–10 517.
Crossref | GoogleScholarGoogle Scholar | open url image1

Cheng WH, Endo A, Zhou L, Penney J, Chen HC , et al. (2002) A unique short chain dehydrogenase/reductase in Arabidopsis glucose signalling and abscisic acid biosynthesis and functions. The Plant Cell 14, 2723–2743.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Chia T, Thorneycroft D, Chapple A, Messerli G, Chen J, Zeman SC, Smith SM, Smith AM (2004) A cytosolic glucsyltransferase is required for the conversion of starch to sucrose in Arabidopsis leaves at night. The Plant Journal 37, 853–863.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Contento AL, Kim SJ, Bassham DC (2004) Transcriptome profiling of the response of Arabidopsis suspension culture cells to sucrose starvation. Plant Physiology 135, 2330–2347.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cotelle V, Meek SE, Provan F, Milne FC, Morrice N, MacKintosh C (2000) 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO Journal 19, 2869–2876.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Critchley JH, Zeeman SC, Takaha T, Smith AM, Smith SM (2001) A critical role for disporportionating enzyme in starch breakdown is revealed by a knock-out mutant in Arabidopsis. The Plant Journal 26, 89–100.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Cross JM, von Korff M, Altmann T, Bartzenko L, Sulpice R, Gibon Y, Palacios N, Stitt M (2006) Natural variation in carbon-nitrogen interactions: changes of metabolite levels and enzyme activities across 24 Arabidopsis thaliana accessions. Plant Physiology 142, 1574–1588.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi MK (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors, unprecedented sensitivity reveals novel root- and shoot-specific genes. The Plant Journal 38, 366–379.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

de Silva-Udawatta MN, Cannon JF (2001) Roles of trehalose phosphate synthase in yeast glycogen metabolism and sporulation. Molecular Microbiology 40, 1345–1356.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Delatte T, Umhang M, Trevisan M, Eicke S, Thorneycroft D, Smith SM, Zeeman SC (2006) Evidence for distinct mechanisms of starch granule breakdown in plants. Journal of Biological Chemistry 281, 12 050–12 059.
Crossref | GoogleScholarGoogle Scholar | open url image1

Deuschle K, Chaudhuri B, Okumoto S, Lager I, Lalonde S, Frommer WB (2006) Rapid metabolism of glucose detected with FRET glucose nanosensors in epidermal cells and intact roots of Arabidopsis RNA-silencing mutants. The Plant Cell 18, 2314–2325.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Dieuaide M, Couée I, Pradet A, Raymond P (1993) Effects of glucose starvation on the oxidation of fatty acids by maize root tip mitochondria and peroxisomes, evidence for mitochondrial fatty acid beta-oxidation and acyl-CoA dehydrogenase activity in a higher plant. The Biochemical Journal 296, 199–207.
PubMed |
open url image1

van Dijck P, Mascorro-Gallardo JO, de Bus M, Royackers K, Iturriaga G, Thevelein JM (2002) Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trehalose levels on expression in yeast. The Biochemical Journal 366, 63–71.
PubMed |
open url image1

Doelling JH, Walker JM, Friedman EM, Thompson AR, Vierstra RD (2002) The APG8/12-activating enzyme APG7 is required for proper nutrient recycling and senescence in Arabidopsis thaliana. Journal of Biological Chemistry 277, 33 105–33 114.
Crossref | GoogleScholarGoogle Scholar | open url image1

Eastmond PJ, van Dijken AJH, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JD, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. The Plant Journal 29, 225–235.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fettke J, Chia T, Eckermann N, Smith AM, Steup M (2006) A transglucosidase necessary for starch degradation and maltose metabolism in leaves acts on cytosolic heteroglycans (SHG). The Plant Journal 46, 668–684.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fondy BR, Geiger DR (1985) Diurnal changes of allocation of newly fixed carbon in exporting sugar beet leaves. Plant Physiology 78, 753–757.
PubMed |
open url image1

Francis D, Halford NG (2006) Nutrient sensing in plant meristems. Plant Molecular Biology 60, 981–993.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Fu Y, Ballicora MA, Leykam J, Preiss J (1998) Mechanism of reductive activation of potato tuber ADP-glucose pyrophosphorylase. Journal of Biological Chemistry 273, 25 045–25 052.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gancedo C, Flores C-L (2004) The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Research 4, 351–359.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Geigenberger P, Lerchl J, Stitt M, Sonnewald U (1996) Phloem-specific expression of pyrophosphatase inhibits long distance transport of carbohydrates and amino acids in tobacco plants. Plant, Cell & Environment 19, 43–55.
Crossref | GoogleScholarGoogle Scholar | open url image1

Geigenberger P, Stitt M (2000) Diurnal changes in sucrose, nucleotides, starch synthesis, and AGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase. The Plant Journal 23, 795–806.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Geigenberger P, Kolbe A, Tiessen A (2005) Redox regulation of carbon storage and partitioning in response to light and sugars. Journal of Experimental Botany 56, 1469–1479.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Geiger DR, Servaites JC (1994) Diurnal regulation of photosynthetic C metabolism in C3 plants. Annual Review of Plant Physiology 45, 235–256.
Crossref | GoogleScholarGoogle Scholar | open url image1

Geiger DR, Servaites JC, Fuchs MA (2000) Role of starch in carbon translocation and partitioning at the plant level. Australian Journal of Plant Physiology 27, 571–582. open url image1

Geiger M, Haake V, Ludewig F, Sonnewald U, Stitt M (1999) The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco. Plant, Cell & Environment 22, 1177–1199.
Crossref | GoogleScholarGoogle Scholar | open url image1

Gerhardt R, Stitt M, Heldt HW (1987) Subcellular metabolite levels in spinach leaves. Regulation of sucrose synthesis during diurnal alterations in photosynthesis. Plant Physiology 83, 399–407.
PubMed |
open url image1

Gibon Y, Blaesing OE, Palacios-Rojas N, Pankovic D, Hendriks JH, Fisahn J, Hohne M, Gunther M, Stitt M (2004a) Adjustment of diurnal starch turnover to short days, depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. The Plant Journal 39, 847–862.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gibon Y, Blaesing OE, Hannemann J, Carillo P, Hohne M, Hendriks JH, Palacios N, Cross J, Selbig J, Stitt M (2004b) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays, comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. The Plant Cell 16, 3304–3325.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gibon Y, Usadel B, Bläsing Ö, Kamlage K, Höhne M, Trethewey R, Stitt M (2006) Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes. Genome Biology 7, R76.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Gibson SI (2005) Control of plant development and gene expression by sugar signalling. Current Opinion in Plant Biology 8, 93–102.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Glinski M, Weckwerth W (2005) Differential multisite phosphorylation of the trehalose-6-phosphate synthase gene family in Arabidopsis thaliana – a mass spectrometry-based process for multiparallel peptide library phosphorylation analysis. Molecular and Cellular Proteomics 4, 1614–1625.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Goldschmidt EE, Huber SC (1992) Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose and hexose sugars. Plant Physiology 99, 1443–1448.
PubMed |
open url image1

Gonzali S, Alphi A, Blando F, de Bellis L (2002) Arabidopsis (HXK1 and HXK2) and yeast (HXK2) hexokinases overexpressed in transgenic lines are characterized by different catalytic properties. Plant Science 163, 943–954.
Crossref |
open url image1

Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biology 4, 117.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Halford NG, Hey S, Jhurreea D, Laurie S, McKibbins RS , et al. (2003) Metabolic signalling and carbon partitioning, role of Snf1-related (SnRK1) protein kinase.  Journal of Experimental Biology 54, 467–475. open url image1

Hardie DG, Scott JW, Pan DA, Hudson ER (2003) Management of cellular energy by the AMP-activated protein kinase system. FEBS Letters 546, 113–120.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Harthill JE, Meek SEM, Morrice N, Peggie MW, Borch J, Wong BHC, MacKintosh C (2006) Phosphorylation and 14-3-3 binding of Arabidopsis trehalose-phosphate synthase 5 in response to 2-deoxyglucose. The Plant Journal 47, 211–223.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hendriks JHM, Kolbe A, Gibon Y, Stitt M, Geigenberger P (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiology 133, 838–849.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Ho S, Chao Y, Tong W, Yu S (2001) Sugar coordinately and differentially regulates growth- and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiology 125, 877–890.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Hohmann S, Bell W, Neves MJ, Valckx D, Thevelein JM (1996) Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis. Molecular Microbiology 20, 981–991.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Huber SC, Huber JL (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 47, 431–444.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

James F, Brouquisse R, Suire C, Pradet A, Raymond P (1996) Purification and biochemical characterization of a vacuolar serine endopeptidase induced by glucose starvation in maize roots. The Biochemical Journal 320, 283–292.
PubMed |
open url image1

Kaplan F, Guy CL (2005) RNA interference of Arabidopsis beta-amylase8 prevents maltose accumulation upon cold shock and increases sensitivity of PSII photochemical efficiency to freezing stress. The Plant Journal 44, 730–744.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kehr J, Hustiak F, Walz C, Willmitzer L, Fisahn J (1998) Transgenic plants changed in carbon allocation pattern display a shift in diurnal growth pattern. The Plant Journal 16, 497–503.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annual Review of Plant Biology 47, 509–540.
Crossref | GoogleScholarGoogle Scholar | open url image1

Koch KE (2004) Sucrose metabolism, regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7, 235–246.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kolbe A, Tiessen A, Schluepmann H, Paul M, Ulrich S, Geigenberger P (2005) Trehalose 6-phosphate regulates starch synthesis via posttranslational redox activation of ADP-glucose pyrophosphorylase. Proceedings of the National Academy of Sciences USA 102, 11 118–11 123.
Crossref | GoogleScholarGoogle Scholar | open url image1

Kolbe A, Oliver S, Fernie AR, Stitt M, van Dongen JT, Geigenberger P (2006) Combined transcript and metabolite profiling of Arabidopsis leaves reveals fundamental effects of the thiol-disulfide status on plant metabolism. Plant Physiology 141, 412–422.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Kötting O, Pusch K, Tiessen A, Geigenberger P, Steup M, Ritte G (2005) Identification of a novel enzyme required for strch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiology 137, 242–252.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Krapp A, Quick WP, Stitt M (1991) Rubisco, other Calvin cycle enzymes and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream. Planta 186, 58–69.
Crossref | GoogleScholarGoogle Scholar | open url image1

Krapp A, Stitt M (1995) An evaluation of direct and indirect mechanisms for the “sink”-regulation of photosynthesis in spinach, changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady state transcript levels after cold girdling source leaves. Planta 195, 313–323.
Crossref | GoogleScholarGoogle Scholar | open url image1

Lemaire SD, Guillon B, Le Marechal P, Keryer E, Miginia-Maslow M, Decottignies P (2004) New thioredoxin targets in the unicellular photosynthetic eukaryote Chlamydomonas reinhardtii. Proceedings of the National Academy of Sciences USA 101, 7475–7480.
Crossref | GoogleScholarGoogle Scholar | open url image1

Leon P, Sheen J (2003) Sugar and hormone connections. Trends in Plant Science 8, 110–116.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Leyman B, van Dijck P, Thevelein JM (2001) An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends in Plant Science 6, 510–513.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Li Y, Lee KK, Walsh S, Smith C, Hadingham S, Sorefan K, Cawley G, Bevan MW (2006) Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promotor classification using a relevance vector machine. Genome Research 16, 414–427.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lloyd JR, Kossmann J, Ritte G (2005) Leaf starch degradation comes out of the shadows. Trends in Plant Science 10, 130–137.
PubMed |
open url image1

Lu Y, Sharkey TD (2004) The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218, 466–473.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lu Y, Gehan JP, Sharkey TD (2005) Daylength and circadian effects on starch degradation and maltose metabolism. Plant Physiology 138, 2280–2291.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lu Y, Steichen JM, Van J, Sharkey TD (2006) The role of cytosolic α-glucan phosphorylase in maltose metabolism and the comparison of amylomaltase in Arabidopsis and Escherichia coli. Plant Physiology 142, 878–889.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lunn J, Feil R, Hendriks JH, Gibon Y, Mocuende R, Scheible WR, Osuna D, Carillo P, Hajirezaei M, Stitt M (2006) Sugars lead to large changes of trehalose-6-phosphate in Arabidopsis, which are correlated with changes in the post-translational activation of AGPase and the rate of starch synthesis. The Biochemical Journal 397, 139–148.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Lunn JE (2007) Gene families and evolution of trehalose metabolism in plants. Functional Plant Biology 34, 550–563.
Crossref | GoogleScholarGoogle Scholar | open url image1

MacRae E , Lunn JE (2006) Control of sucrose biosynthesis. In ‘Advances in plant research – control of primary metabolism in plants’. (Eds W Plaxton, M MacManus) pp. 234–257. (Blackwell: Oxford)

Marchand C, Le Marechal P, Meyer Y, Miginiac-Maslow M, Issakidis-Bourguet E, Decottignies P (2004) New targets of Arabidopsis thioredoxins revealed by proteomic analysis. Proteomics 4, 2696–2706.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Matt P, Geiger M, Walch-Liu P, Engels C, Krapp A, Stitt M (2001) Elevated carbon dioxide increases nitrate uptake and nitrate reductase activity when tobacco is growing on nitrate, but increases ammonium uptake and inhibits nitrate reductase activity when tobacco is growing on ammonium nitrate. Plant, Cell & Environment 24, 1119–1137.
Crossref | GoogleScholarGoogle Scholar | open url image1

McLaughlin JE, Boyer JS (2004) Glucose localization in maize ovaries when kernel number decreases at low water potential and sucrose is fed to the stems. Annals of Botany 94, 675–689.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Menges M, Samland AK, Planchais S, Murray JAH (2006) The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phase transition in Arabidopsis. The Plant Cell 18, 893–906.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Meyer C , Stitt M (2001) Nitrate reduction. In ‘Plant nitrogen’. (Eds PJ Lea, JF Morot-Gaudry) pp. 37–60. (Springer Verlag: Heidelberg)

Mikkelsen R, Baunsgaard I, Blennow A (2004) Functional characterisation of alpha-glucan, water diknase, the starch phosphorylating enzyme. The Biochemical Journal 377, 525–532.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Mikkelsen R, Mutenda KE, Mant A, Schurmann P, Blennow A (2005) Alpha-glucan, water diknase (GWD): a plastidic enzyme with redox regulated and coordinated catalytic activity and binding affinity. Proceedings of the National Academy of Sciences USA 102, 1785–1790.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moore B, Cheng S-H, Rice J, Seemann JR (1998) Sucrose cycling, Rubisco expression, and prediction of photosynthetic acclimation to elevated atmospheric CO2. Plant, Cell & Environment 21, 905–915.
Crossref | GoogleScholarGoogle Scholar | open url image1

Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signalling. Science 300, 332–336.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Moorhead G, Douglas P, Cotelle V, Harthill J, Morrice N, MacKintosh C (1999) Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. The Plant Journal 18, 1–12.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Motohashi K, Kondoh A, Stumpp MT, Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proceedings of the National Academy of Science USA , 11 224–11 229. open url image1

Niittylä T, Comparor-Moss S, Lue W-L, Messerli G, Trevisan M , et al. (2006) Similar protein phosphatases control starch metabolism in plants and glycogen metabolism in mammals. Journal of Biological Chemistry 281, 11 815–11 818.
Crossref | GoogleScholarGoogle Scholar | open url image1

Niittlyä T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A previously unknown maltose transporter essential for starch synthesis in leaves. Science 303, 87–89.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Osuna D, Usadel B, Morcuende R, Scheible W-R, Gibon Y , et al. (2007) Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. The Plant Journal 49, 463–491.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. Journal of Experimental Botany 52, 1383–1400.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Preiss J (1988) Biosynthesis of starch and its regulation. In ‘The biochemistry of plants Vol. 14’. (Ed. J Preiss) pp. 181–254. (Academic Press: San Diego)

Price J, Laxmi A, Martin SK, Jang J-C (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. The Plant Cell 16, 2128–2150.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Riesmeier JW, Willmitzer L, Frommer WB (1994) Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. EMBO Journal 13, 1–7.
PubMed |
open url image1

Ritte G, Lloyd JR, Eckermann N, Rottmann A, Kossmann J, Steup M (2002) The starch-related protein R1 is an a-glucan, water dikinase. Proceedings of the National Academy of Sciences USA 99, 7166–7171.
Crossref | GoogleScholarGoogle Scholar | open url image1

Ritte G, Scharf A, Eckermann N, Haebel S, Steup M (2004) Phosphorylation of transitory starch is increased during degradation. Plant Physiology 135 , 2068–2077.
Crossref | GoogleScholarGoogle Scholar | open url image1

Rogers A , Ainsworth EA (2006) The response of foliar carbohydrates to elevated carbon dioxide concentration. In ‘Managed ecosystems and CO2, case studies, processes and perspectives’. (Ed. J Nösberger) pp. 293–310. (Springer Verlag: Heidelberg)

Rolland F, Sheen J (2005) Sugar sensing and signalling networks in plants. Biochemical Society Transactions 33, 269–271.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signalling in plants, conserved and novel mechanisms. Annual Review of Plant Biology 57, 675–709.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rook F, Gerrits N, Kortstee A, van Kampen M, Borrias M, Weisbeek P, Smeekens S (1998) Sucrose-specific signalling represses translation of the Arabidopsis ATB2 bZIP transcription factor gene. The Plant Journal 15, 253–263.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Rylott EL, Gilday AD, Graham IA (2003) The gluconeogenic enzyme phosphoenolpyruvate carboxykinase in Arabidopsis is essential for seedling establishment. Plant Physiology 131, 1834–1842.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Satoh-Nagasawa N, Nagasawa N, Malcomber S, Jackson D (2006) A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 441, 227–230.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

von Schaewen A, Stitt M, Schmidt R, Sonnewald U, Willmitzer L (1991) Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate, inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO Journal 9, 3033–3044..
Crossref | GoogleScholarGoogle Scholar | open url image1

Scheibe R (1990) Light dark modulation – regulation of chloroplast metabolism in a new light. Botanica Acta 103, 327–334. open url image1

Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. The Plant Cell 9, 783–798.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Scheible WR, Morcuende R, Czechowski T, Fritz C, Osuna D, Palacios-Rojas N, Schindelasch D, Thimm O, Udvardi MK, Stitt M (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology 136, 2483–2499.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Scheible W-R,, Morcuende R, Schindelasch D, Czechowski T, Udvardi MK, Gibon Y, Höhne M, Thimm OT, Kamlage B, Trethewey T, Stitt M (2007) Genome-wide reprogramming of metabolism, protein synthesis, cellular growth processes and the regulatory networks of Arabidospsis in response to phosphate. Plant, Cell & Environment 30, 85–112.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Scheidig A, Fröhlich A, Schukze S, Lloyd JR, Kossmann J (2002) Down-regulation of a chloroplast-targeted β-amylase leads to a starch excess phenotype in leaves. The Plant Journal 30, 581–591.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schluepmann H, Pellny T, van Dijken A, Smeekens S, Paul M (2003) Trehalose 6-phosphate is indispensible for carbohydrate utilization and growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA 100, 6849–6854.
Crossref | GoogleScholarGoogle Scholar | open url image1

Schluepmann H, van Dijken A, Aghdasi M, Wobbes B, Paul M, Smeekens S (2004) Trehalose mediated growth inhibition of Arabidopsis seedlings is due to trehalose-6-phosphate accumulation. Plant Physiology 135, 879–890.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Schürmann P, Jacquot J-P (2000) Plant thioredoxin systems revisited. Annual Review of Plant Biology 51, 371–400.
Crossref | GoogleScholarGoogle Scholar | open url image1

Sheen J (1990) Metabolic repression of transcription in plants. The Plant Cell 2, 1027–1038.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Smeekens S (2000) Sugar-induced signal transduction in plants. Annual Review of Plant Biology 51, 49–81.
Crossref | GoogleScholarGoogle Scholar | open url image1

Smith AM, Denyer K, Martin C (1997) The synthesis of the starch granule. Annual Review of Plant Physiology and Plant Molecular Biology 48, 67–87.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Smith AM, Zeeman SC, Smith SM (2005) Starch degradation. Annual Review of Plant Biology 56, 73–98.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiology 136, 2687–2699.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sonnewald U, Brauer M, von Schaewen A, Stitt M, Willmitzer L (1991) Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, the vacuole or the apoplast; a powerful tool to study sucrose metabolism and sink-source interactions. The Plant Journal 1, 95–106.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Sparla F, Costa A, Lo Schiavo F, Pupillo P, Tropst P (2006) Redox regulation of a novel plastid-targeted β-amylase of Arabidopsis. Plant Physiology 141, 840–850.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Stitt M (1990) Fructose 2,6-bisphosphate as a regulatory metabolite in plants. Annual Review of Plant Physiology and Plant Molecular Biology 41, 153–185.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell & Environment 14, 741–762.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stitt M (1999) The first will be last and the last will be first, non-regulated enzymes call the tune? In ‘Plant carbohydrate biochemistry’. (Eds J Burrell, MM Bryant and NJ Kruger) pp. 1–16. (BIOS Scientific Publishers: Oxford)

Stitt M, Bulpin P, ap Ress T (1978) Pathway of starch breakdown in photosynthetic tissue of Pisum sativum. Biochimica et Biophysica Acta 544, 200–214.
PubMed |
open url image1

Stitt M , Huber S , Kerr P (1987) Control of photosynthetic sucrose synthesis. In ‘The biochemistry of plants Vol. 10’. (Eds MD Hatch, NK Boardman) pp. 327–409. (Academic Press: San Diego)

Stitt M, Krapp A (1999) The molecular physiological basis for the interaction between elevated carbon dioxide and nutrients. Plant, Cell & Environment 22, 583–622.
Crossref | GoogleScholarGoogle Scholar | open url image1

Stitt M, von Schaewen A, Willmitzer L (1991) Sink regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin cycle enzymes and an increase of glycolytic enzymes. Planta 183, 40–50. open url image1

Stitt M , Schulze E-D (1994) Plant growth, storage and resource allocation – from flux control in a metabolic chain to the whole plant. In ‘Final report of the SFB 137’. (Ed. E-D Schulze) pp. 57–118. (Academic Press: San Diego)

Stitt M, Sonnewald U (1995) Regulation of metabolism in transgenic plants. Annual Review of Plant Physiology and Plant Molecular Biology 46, 341–368.
Crossref | GoogleScholarGoogle Scholar | open url image1

Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) MapMan, a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal 37, 914–939.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Thompson AR, Vierstra RD (2005) Autophagic recycling, lessons from yeast help define processes in plants. Current Opinion in Plant Biology 8, 165–173.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Thum KE, Shin MJ, Palenchar PM, Kouranov A, Coruzzi GM (2004) Genome wide investigation of light- and C-signalling interactions in Arabidopsis. Genome Biology 5, R10.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tiessen A, Hendriks JHM, Stitt M, Branscheid A, Gibon Y, Farre EM, Geigenberger P (2002) Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase, a novel regulatory mechanism linking starch synthesis to the sucrose supply. The Plant Cell 14, 2191–2213.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Tiessen A, Prescha K, Branscheid A, Palacios N, McKibbin R, Halford NG, Geigenberger P (2003) Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. The Plant Journal 35, 490–500.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Toroser D, Plaut Z, Huber SC (2000) Regulation of a plant SNF1-related protein kinase by glucose-6-phosphate. Plant Physiology 123, 403–412.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Urbanczyk-Wochniak E, Usadel B, Thimm O, Nunes-Nesi A, Carrari F , et al. (2006) Conversion of MapMan to allow the analysis of transcript data from Solanaceous species, effects of genetic and environmental alterations in energy metabolism in the leaf. Plant Molecular Biology 60, 773–792.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

van Vaeck C, Wera S, van Dijck P, Thevelein JM (2001) Analysis and modification of trehalose 6-phosphate levels in the yeast Saccharomyces cerevisiae with the use of Bacillus subtilis phosphotrehalase. The Biochemical Journal 353, 157–162.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends in Plant Science 8, 135–142.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Vogel G, Fiehn O, Jean-Richard-dit Bressel L, Boller T, Wiemken A, Aeschbacher RA, Wingler A (2001) Trehalose metabolism in Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. Journal of Experimental Botany 52, 1817–1826.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Weise SE, Schrader SM, Kleinbeck KR, Sharkey TD (2006) Carbon balance and circadian regulation of hydrolytic and phosphorolytic breakdown of transitory starch. Plant Physiology 141, 879–886.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wiese A, Elzinga N, Wobbes B, Smeekens S (2004) A conserved upstream open reading frame mediates sucrose-induced repression of translation. The Plant Cell 16, 1717–1729.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wiese A, Elzinga N, Wobbes B, Smeekens S (2005) Sucrose-induced translational repression of plant bZIP-type transcription factors. Biochemical Society Transactions 33, 272–275.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Wong JH, Cai N, Balmer Y, Tanaka CK, Vensel WH, Hurkman WJ, Buchanan BB (2004) Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches. Phytochemistry 65, 1629–1640.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Xiao W, Sheen J, Jang JC (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Molecular Biology 44, 451–461.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yanagisawa S, Yoo SD, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425, 521–525.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Yu T-S, Zeeman SC, Thorneycroft D, Fulton DC, Dunstan H , et al. (2005) a-Amylase is not required for breakdown of transitory starch in Arabidopsis leaves. Journal of Biological Chemistry 280, 9773–9779.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1

Zeeman SC, Thorneycroft D, Schupp N, Chapple A, Weck M, Dunstn H, Haldiman P, Bechtod N, Smith AM, Smith SM (2004) Plastidial α-glucan phosphorylase is not required for starch degradation in Arabaidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiology 135, 849–858.
Crossref | GoogleScholarGoogle Scholar | PubMed | open url image1