Advanced gene editing techniques for enhancing disease resistance and climate resilience in crops
Zareen Sarfraz A # , Yusra Zarlashat

A
B
# These authors contributed equally to this work
Handling Editor: Muhammad Nadeem
Abstract
Ensuring food security and solving the issues brought on by climate change require breeding and engineering of climate-resilient crops. Despite its contributions to reducing agricultural diseases, genetic engineering has several limitations, including high labor costs, lengthy processing times, and poor productivity. Genome editing has become a potential method to provide notable opportunities to explain complex biological processes, genetically solve the causes of diseases, and improve crops for disease resistance by effectively modifying multiple traits. Genome editing techniques including TALENs, ZFNs, and CRISPR/Cas9 increase agricultural productivity by developing climate-resistant crops and promoting climate-resilient agriculture. Among these approaches, CRISPR/Cas9 shows exceptional efficacy, minimal chance of off-target effects, and improved traits such as drought tolerance and disease resistance. This study explores advanced gene editing techniques for improving disease resistance in crops and developing climate-resilient varieties to reduce food insecurity and hunger. It demonstrates that these techniques have enhanced the nutritional content and resilience of many crops by fighting abiotic and biotic stresses. Future agricultural practices could alter the genes and improve disease-resistant crops by genome editing techniques.
Keywords: CRISPR-Cas9, disease resistance, gene editing, multi resistance, sustainable agriculture, TALENs, ZFNs, zinc finger.
References
Abdallah NA, Hamwieh A, Radwan K, Fouad N, Prakash C (2021) Genome editing techniques in plants: a comprehensive review and future prospects toward zero hunger. GM Crops Food 12(2), 601-615.
| Crossref | Google Scholar |
Afroz N, Ansary MWR, Islam T (2023) CRISPR-cas genome editing for the development of abiotic stress-tolerant wheat. In ‘Abiotic stresses in wheat’. (Eds M Kamran Khan, A Pandey, M Hamurcu, O Prakash Gupta, S Gezgin) pp. 195–207. (Academic Press) 10.1016/B978-0-323-95368-9.00014-X
Ahmad M (2022) Genomics and transcriptomics to protect rice (Oryza sativa. L.) from abiotic stressors:-pathways to achieving zero hunger. Frontiers in Plant Science 13, 1002596.
| Crossref | Google Scholar |
Ahmad M (2023) Plant breeding advancements with “CRISPR-Cas” genome editing technologies will assist future food security. Frontiers in Plant Science 14, 1133036.
| Crossref | Google Scholar |
Ahmar S, Mahmood T, Fiaz S, Mora-Poblete F, Shafique MS, Chattha MS, Jung K-H (2021) Advantage of nanotechnology-based genome editing system and its application in crop improvement. Frontiers in Plant Science 12, 663849.
| Crossref | Google Scholar |
Ahmed H, Nazir MF, Pan Z, Gong W, Iqbal MS, He S, Du X (2020) Genotyping by sequencing revealed QTL hotspots for trichome-based plant defense in Gossypium hirsutum. Genes 11(4), 368.
| Crossref | Google Scholar |
Al-Mokadem AZ, Alnaggar AE-AM, Mancy AG, Sofy AR, Sofy MR, Mohamed AKS, Abou Ghazala MM, El-Zabalawy KM, Salem NF, Elnosary ME, Agha MS (2022) Foliar application of chitosan and phosphorus alleviate the potato virus Y-induced resistance by modulation of the reactive oxygen species, antioxidant defense system activity and gene expression in potato. Agronomy 12(12), 3064.
| Crossref | Google Scholar |
Andolfo G, Iovieno P, Frusciante L, Ercolano MR (2016) Genome-editing technologies for enhancing plant disease resistance. Frontiers in Plant Science 7, 1813.
| Crossref | Google Scholar |
Arantes PR, Chen X, Sinha S, Saha A, Patel AC, Sample M, Nierzwicki Ł, Lapinaite A, Palermo G (2024) Dimerization of the deaminase domain and locking interactions with Cas9 boost base editing efficiency in ABE8e. Nucleic Acids Research 52(22), 13931-13944.
| Crossref | Google Scholar |
Aroge T, Zhu Y, Jin D-N, Dara MZN, Feng J, Olajuyin AM, Abbas A, Liu S-Y (2024) Omics and CRISPR-Cas9 molecular perception: A progressive review approach for powdery mildew disease management. Physiological and Molecular Plant Pathology 130, 102217.
| Crossref | Google Scholar |
Atia M, Jiang W, Sedeek K, Butt H, Mahfouz M (2024) Crop bioengineering via gene editing: reshaping the future of agriculture. Plant Cell Reports 43(4), 98.
| Crossref | Google Scholar |
Authority EFS, Raffaello T, Casacuberta J, Dalmay T, Guerche P, Hejatko J, Nogué F, Serrano JJS, Gennaro A, Paraskevopoulos K (2020) Outcome of the public consultation on the draft Scientific Opinion on the applicability of the EFSA Opinion on site-directed nucleases type 3 for the safety assessment of plants developed using site-directed nucleases type 1 and 2 and oligonucleotide-directed mutagenesis. Report number 2397-8325. European Food Safety Authority.
Ayyaz A, Fang R, Ma J, Hannan F, Huang Q, Athar HR, Sun Y, Javed M, Ali S, Zhou W, Farooq MA (2022) Calcium nanoparticles (Ca-NPs) improve drought stress tolerance in Brassica napus by modulating the photosystem II, nutrient acquisition and antioxidant performance. NanoImpact 28, 100423.
| Crossref | Google Scholar |
Azameti MK, Dauda WP (2021) Base editing in plants: applications, challenges, and future prospects. Frontiers in Plant Science 12, 664997.
| Crossref | Google Scholar |
Aziz MA, Masmoudi K (2024) Molecular breakthroughs in modern plant breeding techniques. Horticultural Plant Journal 11(1), 15-41.
| Crossref | Google Scholar |
Azizi-Dargahlou S, Pouresmaeil M (2024) Agrobacterium tumefaciens-mediated plant transformation: a review. Molecular Biotechnology 66(7), 1563-1580.
| Crossref | Google Scholar |
Baloglu MC, Celik Altunoglu Y, Baloglu P, Yildiz AB, Türkölmez N, Özden Çiftçi Y (2022) Gene-editing technologies and applications in legumes: progress, evolution, and future prospects. Frontiers in Genetics 13, 859437.
| Crossref | Google Scholar |
Balotf S, Wilson R, Nichols DS, Tegg RS, Wilson CR (2022) Multi-omics reveals mechanisms of resistance to potato root infection by Spongospora subterranea. Scientific Reports 12(1), 10804.
| Crossref | Google Scholar |
Bentham AR, Zdrzałek R, De la Concepcion JC, Banfield MJ (2018) Uncoiling CNLs: structure/function approaches to understanding CC domain function in plant NLRs. Plant Cell Physiology 59(12), 2398-2408.
| Crossref | Google Scholar |
Bhardwaj A, Nain V (2021) TALENs—an indispensable tool in the era of CRISPR: a mini review. Journal of Genetic Engineering Biotechnology 19(1), 125.
| Crossref | Google Scholar |
Bhuyan SJ, Kumar M, Ramrao Devde P, Rai AC, Mishra AK, Singh PK, Siddique KH (2023) Progress in gene editing tools, implications and success in plants: a review. Frontiers in Genome Editing 5, 1272678.
| Crossref | Google Scholar |
Biswas S, Zhang D, Shi J (2021) CRISPR/Cas systems: opportunities and challenges for crop breeding. Plant Cell Reports 40(6), 979-998.
| Crossref | Google Scholar |
Boniecka J (2024) CRISPR/Cas-based precision breeding of oilseed rape (Brassica napus L.) – recent improvements. In ‘A roadmap for plant genome editing’. (Eds A Ricroch, D Eriksson, D Miladinović, J Sweet, K Van Laere, E Woźniak-Gientka) pp. 291–307. (Springer: Cham) 10.1007/978-3-031-46150-7_18
Borrelli VMG, Brambilla V, Rogowsky P, Marocco A, Lanubile A (2018) The enhancement of plant disease resistance using CRISPR/Cas9 technology. Frontiers in Plant Science 9, 1245.
| Crossref | Google Scholar |
Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biology 12, 232.
| Crossref | Google Scholar |
Burroughs CH, Montes CM, Moller CA, Mitchell NG, Michael AM, Peng B, Kimm H, Pederson TL, Lipka AE, Bernacchi CJ (2023) Reductions in leaf area index, pod production, seed size, and harvest index drive yield loss to high temperatures in soybean. Journal of Experimental Botany 74(5), 1629-1641.
| Crossref | Google Scholar |
Cai Y, Chen L, Liu X, Guo C, Sun S, Wu C, Jiang B, Han T, Hou W (2018) CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean. Plant Biotechnology Journal 16(1), 176-185.
| Crossref | Google Scholar |
Chandoliya R, Patial A, Joshi S, Sharma V, Joshi R (2024) Challenges, advancements, and opportunities in genome editing: a medicinal plant perspective. In ‘Ethnopharmacology and OMICS advances in medicinal plants Volume 2: revealing the secrets of medicinal plants’. (Eds M Nandave, R Joshi, J Upadhyay) pp. 403–424. (Springer)
Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular Plant Pathology 17(7), 1140-1153.
| Crossref | Google Scholar |
Chao H, Zhang S, Hu Y, Ni Q, Xin S, Zhao L, Ivanisenko VA, Orlov YL, Chen M (2024) Integrating omics databases for enhanced crop breeding. Journal of Integrative Bioinformatics 20(4), 20230012.
| Crossref | Google Scholar |
Chen B, Hu J, Almeida R, Liu H, Balakrishnan S, Covill-Cooke C, Lim WA, Huang B (2016) Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Nucleic Acids Research 44(8), e75.
| Crossref | Google Scholar |
Chen F, Chen L, Yan Z, Xu J, Feng L, He N, Guo M, Zhao J, Chen Z, Chen H, Yao G, Liu C (2024) Recent advances of CRISPR-based genome editing for enhancing staple crops. Frontiers in Plant Science 15, 1478398.
| Crossref | Google Scholar |
Cheng S, Feng C, Wingen LU, Cheng H, Riche AB, Jiang M, Leverington-Waite M, Huang Z, Collier S, Orford S, et al. (2024) Harnessing landrace diversity empowers wheat breeding. Nature 632(8026), 823-831.
| Crossref | Google Scholar |
Cho SW, Kim S, Kim JM, Kim J-S (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nature Biotechnology 31(3), 230-232.
| Crossref | Google Scholar |
Demirer GS, Silva TN, Jackson CT, Thomas JB, Ehrhardt DW, Rhee SY, Mortimer JC, Landry MP (2021) Nanotechnology to advance CRISPR–Cas genetic engineering of plants. Nature Nanotechnology 16(3), 243-250.
| Crossref | Google Scholar |
Demirjian C, Vailleau F, Berthomé R, Roux F (2023) Genome-wide association studies in plant pathosystems: success or failure? Trends in Plant Science 28(4), 471-485.
| Crossref | Google Scholar |
Devi BM, Guruprasath S, Balu P, Chattopadhyay A, Thilagar SS, Dhanabalan KV, Choudhary M, Moparthi S, Jailani AAK (2024) Dissecting diagnostic and management strategies for plant viral diseases: what next? Agriculture 14(2), 284.
| Crossref | Google Scholar |
Dey A (2021) CRISPR/Cas genome editing to optimize pharmacologically active plant natural products. Pharmacological Research 164, 105359.
| Crossref | Google Scholar |
Eckerstorfer MF, Dolezel M, Engelhard M, Giovannelli V, Grabowski M, Heissenberger A, Lener M, Reichenbecher W, Simon S, Staiano G, Wüst Saucy AG, Zünd J, Lüthi C (2023) Recommendations for the assessment of potential environmental effects of genome-editing applications in plants in the EU. Plants 12(9), 1764.
| Crossref | Google Scholar |
Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F (2016) Efficient targeted genome modification in maize using CRISPR/Cas9 system. Journal of Genetics Genomics 43(1), 37-43.
| Crossref | Google Scholar |
Ferreira P, Choupina AB (2022) CRISPR/Cas9 a simple, inexpensive and effective technique for gene editing. Molecular Biology Reports 49(7), 7079-7086.
| Crossref | Google Scholar |
Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology 87, 99-110.
| Crossref | Google Scholar |
Gerashchenkov GA, Rozhnova NA, Kuluev BR, Kiryanova OY, Gumerova GR, Knyazev AV, Vershinina ZR, Mikhailova EV, Chemeris DA, Matniyazov RT, Baimiev AK, Gubaidullin IM, Baimiev AK, Chemeris AV (2020) Design of guide RNA for CRISPR/Cas plant genome editing. Molecular Biology 54, 24-42.
| Crossref | Google Scholar |
Gong Z, Xu W (2022) Transformation of Arabidopsis thaliana ESB1 gene into Agrobacterium tumefaciens and its identification. Trends in Genetics Evolution 5(1), 1-6.
| Google Scholar |
González Castro N, Bjelic J, Malhotra G, Huang C, Alsaffar SH (2021) Comparison of the feasibility, efficiency, and safety of genome editing technologies. International Journal of Molecular Sciences 22(19), 10355.
| Crossref | Google Scholar |
Greenwood JR, Lacorte-Apostol V, Kroj T, Padilla J, Telebanco-Yanoria MJ, Glaus AN, Roulin A, Padilla A, Zhou B, Keller B (2024) Genome-wide association analysis uncovers rice blast resistance alleles of Ptr and Pia. Communications Biology 7(1), 607.
| Crossref | Google Scholar |
Guo Y, Zhang J, Yin C, Hu X, Zou Y, Xue Z, Wang W (2020) Plant disease identification based on deep learning algorithm in smart farming. Discrete Dynamics in Nature Society 2020(1), 2479172.
| Crossref | Google Scholar |
Gupta RM, Musunuru K (2014) Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. Journal of Clinical Investigation 124(10), 4154-4161.
| Crossref | Google Scholar |
Gupta PK, Balyan HS, Gautam T (2021) SWEET genes and TAL effectors for disease resistance in plants: present status and future prospects. Molecular Plant Pathology 22(8), 1014-1026.
| Crossref | Google Scholar |
Hassan MM, Yuan G, Chen JG, Tuskan GA, Yang X (2020) Prime editing technology and its prospects for future applications in plant biology research. BioDesign Research 2020, 9350905.
| Crossref | Google Scholar |
He B, Pan S, Zhao J, Zou X, Liu X, Wu S (2024) Maize improvement based on modern breeding strategies: progress and perspective. ACS Agricultural Science Technology 4(3), 274-282.
| Crossref | Google Scholar |
Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, Manolio TA (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proceedings of the National Academy of Sciences 106(23), 9362-9367.
| Crossref | Google Scholar |
Hoepers AM, Heinemann JA, Zanatta CB, Chu P, Hiscox TC, Agapito-Tenfen SZ (2024) Predicted multispecies unintended effects from outdoor genome editing. Ecotoxicology Environmental Safety 282, 116707.
| Crossref | Google Scholar |
Hussain A, Ding X, Alariqi M, Manghwar H, Hui F, Li Y, Cheng J, Wu C, Cao J, Jin S (2021) Herbicide resistance: another hot agronomic trait for plant genome editing. Plants 10(4), 621.
| Crossref | Google Scholar |
Ichikawa DM, Abdin O, Alerasool N, Kogenaru M, Mueller AL, Wen H, Giganti DO, Goldberg GW, Adams S, Spencer JM, Razavi R, Nim S, Zheng H, Gionco C, Clark FT, Strokach A, Hughes TR, Lionnet T, Taipale M, Kim PM, Noyes MB (2023) A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nature Biotechnology 41(8), 1117-1129.
| Crossref | Google Scholar |
Idris SH, Mat Jalaluddin NS, Chang LW (2023) Ethical and legal implications of gene editing in plant breeding: a systematic literature review. Journal of Zhejiang University-SCIENCE B 24(12), 1093-1105.
| Crossref | Google Scholar |
Jansing J, Schiermeyer A, Schillberg S, Fischer R, Bortesi L (2019) Genome editing in agriculture: technical and practical considerations. International Journal of Molecular Sciences 20(12), 2888.
| Crossref | Google Scholar |
Kamburova VS, Nikitina EV, Shermatov SE, Buriev ZT, Kumpatla SP, Emani C, Abdurakhmonov IY (2017) Genome editing in plants: an overview of tools and applications. International Journal of Agronomy 2017(1), 7315351.
| Crossref | Google Scholar |
Karlsson M, Kieu NP, Lenman M, Marttila S, Resjö S, Zahid MA, Andreasson E (2024) CRISPR/Cas9 genome editing of potato St DMR6-1 results in plants less affected by different stress conditions. Horticulture Research 11(7), uhae130.
| Crossref | Google Scholar |
Kaur B, Bhatia D, Mavi GS (2021) Eighty years of gene-for-gene relationship and its applications in identification and utilization of R genes. Journal of Genetics 100(2), 50.
| Crossref | Google Scholar |
Kaur R, Singh AK, Singh DK, Singh S (2023) Modern tools of genome engineering and their applications. In ‘Role of microbes in sustainable development: human health and diseases’. (Eds R Sobti, RC Kuhad, R Lal, P Rishi) pp. 193–232. (Springer: Singapore) 10.1007/978-981-99-3126-2_9
Kavuri NR, Ramasamy M, Qi Y, Mandadi K (2022) Applications of CRISPR/Cas13-based RNA editing in plants. Cells 11(17), 2665.
| Crossref | Google Scholar |
Khan Z, Khan SH, Mubarik MS, Sadia B, Ahmad A (2017) Use of TALEs and TALEN technology for genetic improvement of plants. Plant Molecular Biology Reporter 35, 1-19.
| Crossref | Google Scholar |
Kieu NP, Lenman M, Wang ES, Petersen BL, Andreasson E (2021) Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Scientific Reports 11(1), 4487.
| Crossref | Google Scholar |
Koller F, Cieslak M, Bauer-Panskus A (2024) Environmental risk scenarios of specific NGT applications in Brassicaceae oilseed plants. Environmental Sciences Europe 36(1), 189.
| Crossref | Google Scholar |
Kotwal J, Kashyap R, Pathan S (2023) Agricultural plant diseases identification: from traditional approach to deep learning. Materials Today: Proceedings 80, 344-356.
| Crossref | Google Scholar |
Lalotra S, Mukherjee T, Singh A, Yadav PK, Upadhyay P, Ghazaryan K, Rajput VD (2024) Unlocking sustainable agriculture: the crucial role of plant genetic engineering. In ‘Sustainable agriculture: nanotechnology, biotechnology, management food security’, (Eds V Rajput, A Singh, K Ghazaryan, T Minkina, A Al-Tawaha) pp. 143–172. (De Gruyter: Berlin, Boston) 10.1515/9783111369754-007
Lan S, Guojun D, Yu Z, Guocheng H, Qiang Z, Guanglian H, Bo X, Deyong R, Jiang H, Li Z, Zhenyu G, Guangheng Z, Longbiao G, Dali Z, Qian Q (2019) Rapid creation of new photoperiod-/thermo-sensitive genic male-sterile rice materials by CRISPR/Cas9 system. Rice Science 26(2), 129-132.
| Crossref | Google Scholar |
Langridge P, Alaux M, Almeida NF, Ammar K, Baum M, Bekkaoui F, Bentley AR, Beres BL, Berger B, Braun H-J, et al. (2022) Meeting the challenges facing wheat production: the strategic research agenda of the global wheat initiative. Agronomy 12(11), 2767.
| Crossref | Google Scholar |
Lee K-R, Jeon I, Yu H, Kim S-G, Kim H-S, Ahn S-J, Lee J, Lee S-K, Kim HU (2021) Increasing monounsaturated fatty acid contents in hexaploid Camelina sativa seed oil by FAD2 gene knockout using CRISPR-Cas9. Frontiers in Plant Science 12, 702930.
| Crossref | Google Scholar |
Lee S-Y, Kang B, Venkatesh J, Lee J-H, Lee S, Kim J-M, Back S, Kwon J-K, Kang B-C (2024) Development of virus-induced genome editing methods in Solanaceous crops. Horticulture Research 11(1), uhad233.
| Crossref | Google Scholar |
Levengood H, Zhou Y, Zhang C (2024) Advancements in plant transformation: from traditional methods to cutting-edge techniques and emerging model species. Plant Cell Reports 43(11), 273.
| Crossref | Google Scholar |
Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31(8), 688-691.
| Crossref | Google Scholar |
Li Q, Wang B, Yu J, Dou D (2021) Pathogen-informed breeding for crop disease resistance. Journal of Integrative Plant Biology 63(2), 305-311.
| Crossref | Google Scholar |
Li L, Zhang D, Zhang Z, Zhang B (2024) CRISPR/Cas: a powerful tool for designing and improving oil crops. Trends in Biotechnology 43(4), 773-789.
| Crossref | Google Scholar |
Li C, Liu B, Dong H, Yang B (2025) Enhancing resistance to bacterial blight in rice using CRISPR-based base editing technology. The Crop Journal 13(1), 115-124.
| Crossref | Google Scholar |
Liu D, Chen X, Liu J, Ye J, Guo Z (2012) The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. Journal of Experimental Botany 63(10), 3899-3911.
| Crossref | Google Scholar |
Liu L, Zhang J, Xu J, Li Y, Guo L, Wang Z, Zhang X, Zhao B, Guo Y-D, Zhang N (2020) CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. Plant Science 301, 110683.
| Crossref | Google Scholar |
Liu C, Cao Y, Hua Y, Du G, Liu Q, Wei X, Sun T, Lin J, Wu M, Cheng Z, Wang K (2021) Concurrent disruption of genetic interference and increase of genetic recombination frequency in hybrid rice using CRISPR/Cas9. Frontiers in Plant Science 12, 757152.
| Crossref | Google Scholar |
Lopes R, Prasad MK (2024) Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics. Frontiers in Bioengineering Biotechnology 11, 1339189.
| Crossref | Google Scholar |
Lu Y, Happi Mbakam C, Song B, Bendavid E, Tremblay J-P (2022) Improvements of nuclease and nickase gene modification techniques for the treatment of genetic diseases. Frontiers in Genome Editing 4, 892769.
| Crossref | Google Scholar |
Mahmood T, Abdullah M, Ahmar S, Yasir M, Iqbal MS, Yasir M, Ur Rehman S, Ahmed S, Rana RM, Ghafoor A, Nawaz Shah MK, Du X, Mora-Poblete F (2020) Incredible role of osmotic adjustment in grain yield sustainability under water scarcity conditions in wheat (Triticum aestivum L.). Plants 9(9), 1208.
| Crossref | Google Scholar |
Mahmood T, Wang X, Ahmar S, Abdullah M, Iqbal MS, Rana RM, Yasir M, Khalid S, Javed T, Mora-Poblete F, Chen J-T, Shah MKN, Du X (2021) Genetic potential and inheritance pattern of phenological growth and drought tolerance in cotton (Gossypium hirsutum L.). Frontiers in Plant Science 12, 705392.
| Crossref | Google Scholar |
Mahmood T, Iqbal MS, Li H, Nazir MF, Khalid S, Sarfraz Z, Hu D, Baojun C, Geng X, Tajo SM, Dev W, Iqbal Z, Zhao P, Hu G, Du X (2022) Differential seedling growth and tolerance indices reflect drought tolerance in cotton. BMC Plant Biology 22(1), 331.
| Crossref | Google Scholar |
Malik S, Muhammad K, Waheed Y (2023) Nanotechnology: a revolution in modern industry. Molecules 28(2), 661.
| Crossref | Google Scholar |
Mao Y, Botella JR, Liu Y, Zhu J-K (2019) Gene editing in plants: progress and challenges. National Science Review 6(3), 421-437.
| Crossref | Google Scholar |
Martín-Valmaseda M, Devin SR, Ortuño-Hernández G, Pérez-Caselles C, Mahdavi SME, Bujdoso G, Salazar JA, Martínez-Gómez P, Alburquerque N (2023) CRISPR/Cas as a genome-editing technique in fruit tree breeding. International Journal of Molecular Sciences 24(23), 16656.
| Crossref | Google Scholar |
Mascarenhas MS, dos Santos Nascimento F, de Jesus Rocha A, dos Santos Ferreira M, dos Santos Oliveira WD, Lino LSM, de Oliveira Mendes TA, Ferreira CF, dos Santos-Serejo JA, Amorim EP (2024) Use of CRISPR technology in gene editing for tolerance to biotic factors in plants: a systematic review. Current Issues in Molecular Biology 46(10), 11086-11123.
| Crossref | Google Scholar |
Maulenbay A, Rsaliyev A (2024) Fungal disease tolerance with a focus on wheat: a review. Journal of Fungi 10(7), 482.
| Crossref | Google Scholar |
Miglani GS, Kaur A, Kaur L (2020) Plant gene expression control using genome- and epigenome-editing technologies. Journal of Crop Improvement 34(1), 1-63.
| Crossref | Google Scholar |
Mishra R, Agarwal P, Mohanty A (2023) Applications of genome editing techniques for the improvement of medicinal plants. In ‘Phytochemical genomics: plant metabolomics and medicinal plant genomics’. (Eds MK Swamy, A Kumar) pp. 545–569. (Springer) 10.1007/978-981-19-5779-6_22
Misra BB, Langefeld C, Olivier M, Cox LA (2019) Integrated omics: tools, advances and future approaches. Journal of Molecular Endocrinology 62(1), R21-R45.
| Crossref | Google Scholar |
Moffett P (2009) Mechanisms of recognition in dominant R gene mediated resistance. Advances in Virus Research 75, 1-33.
| Crossref | Google Scholar |
Moniruzzaman M, Darwish AG, Ismail A, El-Kereamy A, Tsolova V, El-Sharkawy I (2023) Seedlessness trait and genome editing—a review. International Journal of Molecular Sciences 24(6), 5660.
| Crossref | Google Scholar |
Monnot S, Desaint H, Mary-Huard T, Moreau L, Schurdi-Levraud V, Boissot N (2021) Deciphering the genetic architecture of plant virus resistance by GWAS, state of the art and potential advances. Cells 10(11), 3080.
| Crossref | Google Scholar |
Moon K-B, Park S-J, Park J-S, Lee H-J, Shin SY, Lee SM, Choi GJ, Kim S-G, Cho HS, Jeon J-H, Kim Y-S, Park Y-I, Kim H-S (2022) Editing of StSR4 by Cas9-RNPs confers resistance to Phytophthora infestans in potato. Frontiers in Plant Science 13, 997888.
| Crossref | Google Scholar |
Mores A, Borrelli GM, Laidò G, Petruzzino G, Pecchioni N, Amoroso LGM, Desiderio F, Mazzucotelli E, Mastrangelo AM, Marone D (2021) Genomic approaches to identify molecular bases of crop resistance to diseases and to develop future breeding strategies. International Journal of Molecular Sciences 22(11), 5423.
| Crossref | Google Scholar |
Mourdikoudis S, Kostopoulou A, LaGrow AP (2021) Magnetic nanoparticle composites: synergistic effects and applications. Advanced Science 8(12), 2004951.
| Crossref | Google Scholar |
Mudhalvan S, Ramesh PK, Lakshmi B, Vamsi BK, Ajmal H, Pandiyaraj P, Jeyaprabha J (2024) A review on role of wide hybridization in crop improvement. International Journal of Plant Soil Science 36(6), 652-658.
| Crossref | Google Scholar |
Muntean L, Ona A, Berindean I, Racz I, Muntean S (2022) Maize breeding: from domestication to genomic tools. Agronomy 12(10), 2365.
| Crossref | Google Scholar |
Mushtaq M, Sakina A, Wani SH, Shikari AB, Tripathi P, Zaid A, Galla A, Abdelrahman M, Sharma M, Singh AK, Salgotra RK (2019) Harnessing genome editing techniques to engineer disease resistance in plants. Frontiers in Plant Science 10, 550.
| Crossref | Google Scholar |
Nagar S, Moola AK, Satish L, Anand S, Dogra Rawat C, Ramesh M, Kumar TS, Kumari BR (2021) Advances in genetically modified plants by employing modern biotechnological tools: an update. In ‘Policy issues in genetically modified crops’. (Eds P Singh, A Borthakur, A Abha Singh, A Kumar, KK Singh) pp. 495–513. (Elsevier)
Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Scientific Reports 7(1), 482.
| Crossref | Google Scholar |
Nemudryi AA, Valetdinova KR, Medvedev S, Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Naturae 6(3), 19-40.
| Google Scholar |
Neuhaus D (2022) Zinc finger structure determination by NMR: why zinc fingers can be a handful. Progress in Nuclear Magnetic Resonance Spectroscopy 130–131, 62-105.
| Crossref | Google Scholar |
Noman A, Aqeel M, He S (2016) CRISPR-Cas9: tool for qualitative and quantitative plant genome editing. Frontiers in Plant Science 7, 1740.
| Crossref | Google Scholar |
Oliva R, Ji C, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, Eom J-S, Li C, Nguyen H, Liu B, Auguy F, Sciallano C, Luu VT, Dossa GS, Cunnac S, Schmidt SM, Slamet-Loedin IH, Vera Cruz C, Szurek B, Frommer WB, White FF, Yang B (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology 37(11), 1344-1350.
| Crossref | Google Scholar |
Parvathi M, Antony PD, Kutty MS (2022) Multiple stressors in vegetable production: Insights for trait-based crop improvement in cucurbits. Frontiers in Plant Science 13, 861637.
| Crossref | Google Scholar |
Paul NC, Park S-W, Liu H, Choi S, Ma J, MacCready JS, Chilvers MI, Sang H (2021) Plant and fungal genome editing to enhance plant disease resistance using the CRISPR/Cas9 system. Frontiers in Plant Science 12, 700925.
| Crossref | Google Scholar |
Perkin LC, Adrianos SL, Oppert B (2016) Gene disruption technologies have the potential to transform stored product insect pest control. Insects 7(3), 46.
| Crossref | Google Scholar |
Petolino JF (2015) Genome editing in plants via designed zinc finger nucleases. In Vitro Cellular Developmental Biology-Plant 51, 1-8.
| Crossref | Google Scholar |
Piquerez SJM, Harvey SE, Beynon JL, Ntoukakis V (2014) Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Frontiers in Plant Science 5, 671.
| Crossref | Google Scholar |
Pramanik D, Shelake RM, Park J, Kim MJ, Hwang I, Park Y, Kim J-Y (2021) CRISPR/Cas9-mediated generation of pathogen-resistant tomato against tomato yellow leaf curl virus and powdery mildew. International Journal of Molecular Sciences 22(4), 1878.
| Crossref | Google Scholar |
Qin Y, Park T-S, Cho YS, Lim M-H (2021) TALEN-mediated bar-knockout rice production and transcriptome profiling. Plant Breeding Biotechnology 9(1), 32-44.
| Crossref | Google Scholar |
Quiroz LF, Khan M, Gondalia N, Lai L, McKeown PC, Brychkova G, Spillane C (2024) Tissue culture-independent approaches to revolutionizing plant transformation and gene editing. Horticulture Research 12(2), uhae292.
| Crossref | Google Scholar |
Rahman SU, Khan MO, Ullah R, Ahmad F, Raza G (2024) Agrobacterium-mediated transformation for the development of transgenic crops; present and future prospects. Molecular Biotechnology 66(8), 1836-1852.
| Crossref | Google Scholar |
Rao Y, Yang X, Pan C, Wang C, Wang K (2022) Advance of clustered regularly interspaced short palindromic repeats-Cas9 system and its application in crop improvement. Frontiers in Plant Science 13, 839001.
| Crossref | Google Scholar |
Rehman F, Gong H, Bao Y, Zeng S, Huang H, Wang Y (2022) CRISPR gene editing of major domestication traits accelerating breeding for Solanaceae crops improvement. Plant Molecular Biology 108(3), 157-173.
| Crossref | Google Scholar |
Rosli MAF, Jaafar SNS, Azizan KA, Yaakop S, Aizat WM (2024) Omics approaches to unravel insecticide resistance mechanism in Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). PeerJ 12, e17843.
| Crossref | Google Scholar |
Roy A, Sahu PK, Das C, Bhattacharyya S, Raina A, Mondal S (2023) Conventional and new-breeding technologies for improving disease resistance in lentil (Lens culinaris Medik). Frontiers in Plant Science 13, 1001682.
| Crossref | Google Scholar |
Saleem A, Anwar S, Nawaz T, Fahad S, Saud S, Ur Rahman T, Khan MNR, Nawaz T (2024) Securing a sustainable future: the climate change threat to agriculture, food security, and sustainable development goals. Journal of Umm Al-Qura University for Applied Sciences
| Crossref | Google Scholar |
Sauer NJ, Mozoruk J, Miller RB, Warburg ZJ, Walker KA, Beetham PR, Schöpke CR, Gocal GF (2016) Oligonucleotide-directed mutagenesis for precision gene editing. Plant Biotechnology Journal 14(2), 496-502.
| Crossref | Google Scholar |
Schenke D, Cai D (2020) Applications of CRISPR/Cas to improve crop disease resistance: beyond inactivation of susceptibility factors. iScience 23(9),.
| Crossref | Google Scholar |
Shah T, Andleeb T, Lateef S, Noor MA (2018) Genome editing in plants: advancing crop transformation and overview of tools. Plant Physiology Biochemistry 131, 12-21.
| Crossref | Google Scholar |
Shahzad A, Qian M, Sun B, Mahmood U, Li S, Fan Y, Chang W, Dai L, Zhu H, Li J, Qu C, Lu K (2021) Genome-wide association study identifies novel loci and candidate genes for drought stress tolerance in rapeseed. Oil Crop Science 6(1), 12-22.
| Crossref | Google Scholar |
Singh RK, Sood P, Prasad A, Prasad M (2021) Advances in omics technology for improving crop yield and stress resilience. Plant Breeding 140(5), 719-731.
| Crossref | Google Scholar |
Sinha RK, Jiang F, Eudes F (2021) TALE protein mediated overexpression of embryogenesis related marker genes in wheat microspores. South African Journal of Botany 138, 50-56.
| Crossref | Google Scholar |
Snoeck S, Johanndrees O, Nürnberger T, Zipfel C (2024) Plant pattern recognition receptors: from evolutionary insight to engineering. Nature Reviews Genetics 26, 268-278.
| Crossref | Google Scholar |
Tailor A, Bhatla SC (2024) R gene-mediated resistance in the management of plant diseases. Journal of Plant Biochemistry Biotechnology 33(1), 5-23.
| Crossref | Google Scholar |
Tang P, Zhang Y, Sun X, Tian D, Yang S, Ding J (2010) Disease resistance signature of the leucine-rich repeat receptor-like kinase genes in four plant species. Plant Science 179(4), 399-406.
| Crossref | Google Scholar |
Tao H, Shi X, He F, Wang D, Xiao N, Fang H, Wang R, Zhang F, Wang M, Li A, Liu X, Wang GL, Ning Y (2021) Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes. Journal of Integrative Plant Biology 63(9), 1639-1648.
| Crossref | Google Scholar |
Tariq AS, Akram Z, Shabbir G, Khan KS, Mahmood T, Iqbal MS (2014) Heterosis and combining ability studies for quantitative traits in fodder sorghum (Sorghum bicolor L.). Journal of Agricultural Research 52(3), 329-337.
| Google Scholar |
Thakur T, Sinha K, Kaur T, Kapoor R, Kumar G, Bhunia RK, Salvi P (2022) Efficient genetic transformation of rice for CRISPR/Cas9 mediated genome-editing and stable overexpression studies: a case study on rice lipase 1 and galactinol synthase encoding genes. Agronomy 12(1), 179.
| Crossref | Google Scholar |
Tyagi S, Kesiraju K, Saakre M, Rathinam M, Raman V, Pattanayak D, Sreevathsa R (2020) Genome editing for resistance to insect pests: an emerging tool for crop improvement. ACS Omega 5(33), 20674-20683.
| Crossref | Google Scholar |
Tyagi S, Kumar R, Kumar V, Won SY, Shukla P (2021) Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crops & Food 12(1), 125-144.
| Crossref | Google Scholar |
Uranga M (2024) Virus-induced genome editing: methods and applications in plant breeding. In ‘CRISPR plant functional genomics’. (Ed. JT Chen) pp. 81–106. (CRC Press: Boca Raton) 10.1201/9781003387060
Uranga M, Daròs JA (2023) Tools and targets: the dual role of plant viruses in CRISPR–Cas genome editing. The Plant Genome 16(2), e20220.
| Crossref | Google Scholar |
Uranga M, Aragonés V, García A, Mirabel S, Gianoglio S, Presa S, Granell A, Pasin F, Daròs J-A (2024) RNA virus-mediated gene editing for tomato trait breeding. Horticulture Research 11(1), uhad279.
| Crossref | Google Scholar |
Usman B, Nawaz G, Zhao N, Liu Y, Li R (2020) Generation of high yielding and fragrant rice (Oryza sativa L.) lines by CRISPR/Cas9 targeted mutagenesis of three homoeologs of cytochrome P450 gene family and OsBADH2 and transcriptome and proteome profiling of revealed changes triggered by mutations. Plants 9(6), 788.
| Crossref | Google Scholar |
van der Vlugt CJB (2021) Overview of sixteen scientific opinions on genetically modified plants obtained by new genomic techniques. EFSA Supporting Publication 18(4), 1973E.
| Crossref | Google Scholar |
Van Esse HP, Reuber TL, van der Does D (2020) Genetic modification to improve disease resistance in crops. New Phytologist 225(1), 70-86.
| Crossref | Google Scholar |
Vats S, Kumawat S, Kumar V, Patil GB, Joshi T, Sonah H, Sharma TR, Deshmukh R (2019) Genome editing in plants: exploration of technological advancements and challenges. Cells 8(11), 1386.
| Crossref | Google Scholar |
Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32(9), 947-951.
| Crossref | Google Scholar |
Wang Y, Tyler BM, Wang Y (2019) Defense and counterdefense during plant-pathogenic oomycete infection. Annual Review of Microbiology 73(1), 667-696.
| Crossref | Google Scholar |
Wang Y, Tang Q, Pu L, Zhang H, Li X (2022a) CRISPR-Cas technology opens a new era for the creation of novel maize germplasms. Frontiers in Plant Science 13, 1049803.
| Crossref | Google Scholar |
Wang Y, Zafar N, Ali Q, Manghwar H, Wang G, Yu L, Ding X, Ding F, Hong N, Wang G, Jin S (2022b) CRISPR/Cas genome editing technologies for plant improvement against biotic and abiotic stresses: advances, limitations, and future perspectives. Cells 11(23), 3928.
| Crossref | Google Scholar |
Wani F, Rashid S, Wani S, Saleem Bhat S, Bhat S, Tufekci ED, El Sabagh A, Wani SH, Hamid A (2023) Applications of genome editing in plant virus disease management: CRISPR/Cas9 plays a central role. Canadian Journal of Plant Pathology 45(5–6), 463-474.
| Crossref | Google Scholar |
Wu M-j, Lin Y, Liu H-q, Chen J-m, Fu Y-p, Yang S-h, Wang F (2018) Development of thermo-sensitive male sterile rice with CRISPR/Cas9 technology. Fujian Journal of Agricultural Sciences 33(10), 1011-1015.
| Google Scholar |
Wu K, Xu C, Li T, Ma H, Gong J, Li X, Sun X, Hu X (2023) Application of nanotechnology in plant genetic engineering. International Journal of Molecular Sciences 24(19), 14836.
| Crossref | Google Scholar |
Xu H, Zhang L, Zhang K, Ran Y (2020) Progresses, challenges, and prospects of genome editing in soybean (Glycine max). Frontiers in Plant Science 11, 571138.
| Crossref | Google Scholar |
Yang Y, Saand MA, Huang L, Abdelaal WB, Zhang J, Wu Y, Li J, Sirohi MH, Wang F (2021) Applications of multi-omics technologies for crop improvement. Frontiers in Plant Science 12, 563953.
| Crossref | Google Scholar |
Yang J, Fang Y, Wu H, Zhao N, Guo X, Mackon E, Peng H, Huang S, He Y, Qin B, Liu Y, Liu F, Chen S, Li R (2023a) Improvement of resistance to rice blast and bacterial leaf streak by CRISPR/Cas9-mediated mutagenesis of Pi21 and OsSULTR3;6 in rice (Oryza sativa L.). Frontiers in Plant Science 14, 1209384.
| Crossref | Google Scholar |
Yang J, Horton JR, Liu B, Corces VG, Blumenthal RM, Zhang X, Cheng X (2023b) Structures of CTCF-DNA complexes including all 11 zinc fingers. Nucleic Acids Research 51(16), 8447-8462.
| Crossref | Google Scholar |
Yao Q, Shen R, Shao Y, Tian Y, Han P, Zhang X, Zhu J-K, Lu Y (2024) Efficient and multiplex gene upregulation in plants through CRISPR-Cas-mediated knockin of enhancers. Molecular Plant 17(9), 1472-1483.
| Crossref | Google Scholar |
Yin K, Qiu J-L (2019) Genome editing for plant disease resistance: applications and perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences 374(1767), 20180322.
| Crossref | Google Scholar |
Yıldırım K, Miladinović D, Sweet J, Akin M, Galović V, Kavas M, Zlatković M, de Andrade E (2023) Genome editing for healthy crops: traits, tools and impacts. Frontiers in Plant Science 14, 1231013.
| Crossref | Google Scholar |
Zafar K, Khan MZ, Amin I, Mukhtar Z, Yasmin S, Arif M, Ejaz K, Mansoor S (2020a) Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Frontiers in Plant Science 11, 575.
| Crossref | Google Scholar |
Zafar K, Sedeek KEM, Rao GS, Khan MZ, Amin I, Kamel R, Mukhtar Z, Zafar M, Mansoor S, Mahfouz MM (2020b) Genome editing technologies for rice improvement: progress, prospects, and safety concerns. Frontiers in Genome Editing 2, 5.
| Crossref | Google Scholar |
Zafar MM, Manan A, Razzaq A, Zulfqar M, Saeed A, Kashif M, Khan AI, Sarfraz Z, Mo H, Iqbal MS, Shakeel A, Ren M (2021) Exploiting agronomic and biochemical traits to develop heat resilient cotton cultivars under climate change scenarios. Agronomy 11(9), 1885.
| Crossref | Google Scholar |
Zárate-Chaves CA, Audran C, Medina Culma CA, Escalon A, Javegny S, Gagnevin L, Thomas E, Pimparé LL, López CE, Jacobs JM, Noël LD, Koebnik R, Bernal AJ, Szurek B (2023) CRISPRi in Xanthomonas demonstrates functional convergence of transcription activator-like effectors in two divergent pathogens. New Phytologist 238(4), 1593-1604.
| Crossref | Google Scholar |
Zhang Y, Massel K, Godwin ID, Gao C (2018) Applications and potential of genome editing in crop improvement. Genome Biology 19(1), 210.
| Crossref | Google Scholar |
Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, Tang J, Yu X, Liu G, Luo L (2019a) Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding 39, 47.
| Crossref | Google Scholar |
Zhang H, Fu Y, Guo H, Zhang L, Wang C, Song W, Yan Z, Wang Y, Ji W (2019b) Transcriptome and proteome-based network analysis reveals a model of gene activation in wheat resistance to stripe rust. International Journal of Molecular Sciences 20(5), 1106.
| Crossref | Google Scholar |
Zhang S, Shen J, Li D, Cheng Y (2021) Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 11(2), 614-648.
| Crossref | Google Scholar |
Zhang C, Liu S, Li X, Zhang R, Li J (2022a) Virus-induced gene editing and its applications in plants. International Journal of Molecular Sciences 23(18), 10202.
| Crossref | Google Scholar |
Zhang F, Neik TX, Wu T, Edwards D, Batley J (2022b) Understanding R gene evolution in Brassica. Agronomy 12(7), 1591.
| Crossref | Google Scholar |
Zhang H, Goh NS, Wang JW, Pinals RL, González-Grandío E, Demirer GS, Butrus S, Fakra SC, Del Rio Flores A, Zhai R, Zhao B, Park S-J, Landry MP (2022c) Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nature Nanotechnology 17(2), 197-205.
| Crossref | Google Scholar |
Zhang R, Zhang C, Yu C, Dong J, Hu J (2022d) Integration of multi-omics technologies for crop improvement: status and prospects. Frontiers in Bioinformatics 2, 1027457.
| Crossref | Google Scholar |
Zhao Y, Zhang C, Liu W, Gao W, Liu C, Song G, Li W-X, Mao L, Chen B, Xu Y, Li X, Xie C (2016) An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Scientific Reports 6(1), 23890.
| Crossref | Google Scholar |
Zhong X, Hu L, Tang G (2024) The application of genome editing technologies in soybean (Glycine max L.) for abiotic stress tolerance. In ‘Plant genome editing technologies: speed breeding, crop improvement sustainable agriculture’. (Eds JT Chen, S Ahmar) pp. 221–237. (Springer: Singapore) 10.1007/978-981-99-9338-3_8
Zhu H, Li C, Gao C (2020) Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology 21(11), 661-677.
| Crossref | Google Scholar |
Zhu J, Moreno-Pérez A, Coaker G (2023) Understanding plant pathogen interactions using spatial and single-cell technologies. Communications Biology 6(1), 814.
| Crossref | Google Scholar |
Zlobin NE, Lebedeva MV, Taranov VV (2020) CRISPR/Cas9 genome editing through in planta transformation. Critical Reviews in Biotechnology 40(2), 153-168.
| Crossref | Google Scholar |