Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE (Open Access)

The gibberellic acid responsive GmbHLHm1 transcription factor influences nodule development, nitrogen fixation activity and shoot nitrogen content in soybean (Glycine max)

Die Hu A B , Zhengyu Wen C D , Nijat Imin E , Kanwarpal S. Dhugga C and Brent N. Kaiser https://orcid.org/0000-0001-6167-2423 A B *
+ Author Affiliations
- Author Affiliations

A School of Life and Environmental Sciences, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia.

B Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia.

C International Maize and Wheat Improvement Centre, Texcoco, Mexico.

D KeyGene Inc., Rockville, MD, USA.

E School of Science, Western Sydney University, Penrith, NSW 2751, Australia.

* Correspondence to: brent.kaiser@sydney.edu.au

Handling Editor: Ulrike Mathesius

Functional Plant Biology 52, FP25045 https://doi.org/10.1071/FP25045
Submitted: 4 February 2025  Accepted: 5 June 2025  Published: 20 June 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

GmbHLHm1 is a basic Helix-Loop-Helix membrane (bHLHm1) DNA binding transcription factor localized to the symbiosome membrane and nucleus in soybean (Glycine max) nodules. Overexpression of GmbHLHm1 significantly increased nodule number and size, nitrogen fixation activity, and nitrogen delivery to the shoots. This contrasts with reduced nodule numbers per plant, nitrogen fixation activity and poor plant growth when silenced using RNAi. The promoter of GmbHLHm1 was found to be sensitive to exogenous GA supply, decreasing the level of GUS expression in transformed hairy roots in both nodules and roots and reducing native GmbHLHm1 expression in wild-type nodules. In summary, our study suggests that GmbHLHm1 positively regulates soybean nodulation and nitrogen fixation, and that GA can negatively regulate GmbHLHm1 expression in soybean nodules.

Keywords: ammonium, gibberellic acid, Glycine max, GmbHLHm1, nitrogen, nitrogen fixation, nodulation, soybean, symbiosome.

References

Akamatsu A, Nagae M, Nishimura Y, Romero Montero D, Ninomiya S, Kojima M, Takebayashi Y, Sakakibara H, Kawaguchi M, Takeda N (2021) Endogenous gibberellins affect root nodule symbiosis via transcriptional regulation of NODULE INCEPTION in Lotus japonicus. The Plant Journal 105(6), 1507-1520.
| Crossref | Google Scholar | PubMed |

Anderson EJ, Ali ML, Beavis WD, Chen P, Clemente TE, Diers BW, Graef GL, Grassini P, Hyten DL, McHale LK, Nelson RL, Parrott WA, Patil GB, Stupar RM, Tilmon KJ (2019) Soybean [Glycine max (L.) Merr.] breeding: history, improvement, production and future opportunities. In ‘Advances in plant breeding strategies: legumes. Vol. 7’. (Eds J Al-Khayri, S Jain, D Johnson) pp. 431–516. (Springer)

Barbieri P, Starck T, Voisin A-S, Nesme T (2023) Biological nitrogen fixation of legumes crops under organic farming as driven by cropping management: a review. Agricultural Systems 205, 103579.
| Crossref | Google Scholar |

Bergersen FJ, Turner GL, Peoples MB, Gault RR, Morthorpe LJ, Brockwell J (1992) Nitrogen fixation during vegetative and reproductive growth of irrigated soybeans in the field: application of d15N methods. Australian Journal of Agricultural Research 43, 145-153.
| Crossref | Google Scholar |

Boiero L, Perrig D, Masciarelli O, Penna C, Cassán F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Applied Microbiology and Biotechnology 74, 874-880.
| Crossref | Google Scholar | PubMed |

Botha WJ, Jaftha JB, Bloem JF, Habig JH, Law IJ (2004) Effect of soil bradyrhizobia on the success of soybean inoculant strain CB 1809. Microbiological Research 159(3), 219-231.
| Crossref | Google Scholar | PubMed |

Broughton WJ, Dilworth MJ (1971) Control of leghaemoglobin synthesis in snake beans. Biochemical Journal 125(4), 1075-1080.
| Crossref | Google Scholar |

Chiasson DM, Loughlin PC, Mazurkiewicz D, Mohammadidehcheshmeh M, Fedorova EE, Okamoto M, McLean E, Glass ADM, Smith SE, Bisseling T, Tyerman SD, Day DA, Kaiser BN (2014) Soybean SAT1 (Symbiotic Ammonium Transporter 1) encodes a bHLH transcription factor involved in nodule growth and NH4+ transport. Proceedings of the National Academy of Sciences 111(13), 4814-4819.
| Crossref | Google Scholar |

Chu X, Su H, Hayashi S, Gresshoff PM, Ferguson BJ (2022) Spatiotemporal changes in gibberellin content are required for soybean nodulation. New Phytologist 234(2), 479-493.
| Crossref | Google Scholar |

Dechorgnat J, Francis KL, Dhugga KS, Rafalski JA, Tyerman SD, Kaiser BN (2018) Root ideotype influences nitrogen transport and assimilation in maize. Frontiers in Plant Science 9, 531.
| Crossref | Google Scholar |

Drapek C, Rizza A, Mohd-Radzman NA, Schiessl K, Dos Santos Barbosa F, Wen J, Oldroyd GED, Jones AM (2024) Gibberellin dynamics governing nodulation revealed using GIBBERELLIN PERCEPTION SENSOR 2 in Medicago truncatula lateral organs. The Plant Cell 36(10), 4442-4456.
| Crossref | Google Scholar |

Ferguson BJ, Ross JJ, Reid JB (2005) Nodulation phenotypes of gibberellin and brassinosteroid mutants of pea. Plant Physiology 138(4), 2396-2405.
| Crossref | Google Scholar | PubMed |

Ferguson BJ, Foo E, Ross JJ, Reid JB (2011) Relationship between gibberellin, ethylene and nodulation in Pisum sativum. New Phytologist 189(3), 829-842.
| Crossref | Google Scholar | PubMed |

Ferguson BJ, Mens C, Hastwell AH, Zhang M, Su H, Jones CH, Chu X, Gresshoff PM (2019) Legume nodulation: the host controls the party. Plant, Cell & Environment 42(1), 41-51.
| Crossref | Google Scholar | PubMed |

Fonouni-Farde C, Tan S, Baudin M, Brault M, Wen J, Mysore KS, Niebel A, Frugier F, Diet A (2016) DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection. Nature Communications 7(1), 12636.
| Crossref | Google Scholar |

Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. The Plant Cell 21(5), 1328-1339.
| Crossref | Google Scholar |

Hartweck LM, Olszewski NE (2006) Rice GIBBERELLIN INSENSITIVE DWARF1 is a gibberellin receptor that illuminates and raises questions about GA signaling. The Plant Cell 18(2), 278-282.
| Crossref | Google Scholar |

Hayashi S, Reid DE, Lorenc MT, Stiller J, Edwards D, Gresshoff PM, Ferguson BJ (2012) Transient Nod factor-dependent gene expression in the nodulation-competent zone of soybean (Glycine max [L.] Merr.) roots. Plant Biotechnology Journal 10(8), 995-1010.
| Crossref | Google Scholar | PubMed |

Herridge DF, Bergersen FJ, Peoples MB (1990) Measurement of nitrogen fixation by soybean in the field using the ureide and natural 15N abundance methods. Plant Physiology 93(2), 708-716.
| Crossref | Google Scholar |

Hwang S, Ray JD, Cregan PB, King CA, Davies MK, Purcell LC (2014) Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L.[Merr.]). Euphytica 195(3), 419-434.
| Crossref | Google Scholar |

Imsande J (1991) Regulation of nodule efficiency by the undisturbed soybean plant1. Journal of Experimental Botany 42(5), 687-691.
| Crossref | Google Scholar |

Kaiser BN, Finnegan PM, Tyerman SD, Whitehead LF, Bergersen FJ, Day DA, Udvardi MK (1998) Characterization of an ammonium transport protein from the peribacteroid membrane of soybean nodules. Science 281(5380), 1202-1206.
| Crossref | Google Scholar |

Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7(5), 193-195.
| Crossref | Google Scholar | PubMed |

Kebede E (2021) Contribution, utilization, and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Frontiers in Sustainable Food Systems 5, 767998.
| Crossref | Google Scholar |

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30(1), 325-327.
| Crossref | Google Scholar | PubMed |

Li Y, Jones L, McQueen-Mason S (2003) Expansins and cell growth. Current Opinion in Plant Biology 6(6), 603-610.
| Crossref | Google Scholar | PubMed |

Li H, Wang Y, Li X, Gao Y, Wang Z, Zhao Y, Wang M (2011) A GA-insensitive dwarf mutant of Brassica napus L. correlated with mutation in pyrimidine box in the promoter of GID1. Molecular Biology Reports 38(1), 191-197.
| Crossref | Google Scholar | PubMed |

Li X, Zhao J, Tan Z, Zeng R, Liao H (2015) GmEXPB2, a cell wall β-Expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiology 169(4), 2640-2653.
| Crossref | Google Scholar | PubMed |

Li X, Zheng J, Yang Y, Liao H (2018) INCREASING NODULE SIZE1 expression is required for normal rhizobial symbiosis and nodule development. Plant Physiology 178(3), 1233-1248.
| Crossref | Google Scholar | PubMed |

Li R, Chen H, Yang Z, Yuan S, Zhou X (2020) Research status of soybean symbiosis nitrogen fixation. Oil Crop Science 5(1), 6-10.
| Crossref | Google Scholar |

Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G (2008) Identification of four soybean reference genes for gene expression normalization. The Plant Genome 1(1), 44-54.
| Crossref | Google Scholar |

Lievens S, Goormachtig S, Den Herder J, Capoen W, Mathis Ŕ, Hedden P, Holsters M (2005) Gibberellins are involved in nodulation of Sesbania rostrata. Plant Physiology 139(3), 1366-1379.
| Crossref | Google Scholar | PubMed |

Maekawa T, Maekawa-Yoshikawa M, Takeda N, Imaizumi-Anraku H, Murooka Y, Hayashi M (2009) Gibberellin controls the nodulation signaling pathway in Lotus japonicus. The Plant Journal 58(2), 183-194.
| Crossref | Google Scholar | PubMed |

McAdam EL, Reid JB, Foo E (2018) Gibberellins promote nodule organogenesis but inhibit the infection stages of nodulation. Journal of Experimental Botany 69(8), 2117-2130.
| Crossref | Google Scholar | PubMed |

Mena M, Cejudo FJ, Isabel-Lamoneda I, Carbonero P (2002) A role for the DOF transcription factor BPBF in the regulation of gibberellin-responsive genes in barley aleurone. Plant Physiology 130(1), 111-119.
| Crossref | Google Scholar | PubMed |

Mohammadi Dehcheshmeh M (2013) Regulatory control of the symbiotic enhanced soybean bHLH transcription factor, GmSAT1. PhD thesis, University of Adelaide.

Mohammadi-Dehcheshmeh M, Ebrahimie E, Tyerman SD, Kaiser BN (2014) A novel method based on combination of semi-in vitro and in vivo conditions in Agrobacterium rhizogenes-mediated hairy root transformation of Glycine species. In Vitro Cellular & Developmental Biology - Plant 50(2), 282-291.
| Crossref | Google Scholar |

Murase K, Hirano Y, Sun T-P, Hakoshima T (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456(7221), 459-463.
| Crossref | Google Scholar |

Nett RS, Bender KS, Peters RJ (2022) Production of the plant hormone gibberellin by rhizobia increases host legume nodule size. The ISME Journal 16(7), 1809-1817.
| Crossref | Google Scholar | PubMed |

Ott T, van Dongen JT, Gunther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Current Biology 15, 531-535.
| Crossref | Google Scholar |

Ovchinnikova E, Chiasson D, Wen Z, Wu Y, Tahaei H, Smith PMC, Perrine-Walker F, Kaiser BN (2023) Arbuscular-mycorrhizal symbiosis in medicago regulated by the transcription factor MtbHLHm1;1 and the ammonium facilitator protein MtAMF1;3. International Journal of Molecular Sciences 24(18), 14263.
| Crossref | Google Scholar |

Peng X-Q, Ke S-W, Liu J-Q, Chen S, Zhong T-X, Xie X-M (2016) Deletion and hormone induction analyses of the 4-coumarate: CoA ligase gene promoter from Pennisetum purpureum in transgenic tobacco plants. Plant Cell, Tissue and Organ Culture (PCTOC) 126(3), 439-448.
| Crossref | Google Scholar |

Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) A mutant gibberellin-synthesis gene in rice. Nature 416(6882), 701-702.
| Crossref | Google Scholar |

Shen L, Feng J (2024) NIN—at the heart of NItrogen-fixing Nodule symbiosis. Frontiers in Plant Science 14, 1284720.
| Crossref | Google Scholar |

Shimada TL, Shimada T, Hara-Nishimura I (2010) A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. The Plant Journal 61(3), 519-528.
| Crossref | Google Scholar | PubMed |

Sudadi S, Suryono S (2015) Exogenous application of tryptophan and indole acetic acid (IAA) to induce root nodule formation and increase soybean yield in acid, neutral and alkaline soil. AGRIVITA Journal of Agricultural Science 37(1), 37-44.
| Crossref | Google Scholar |

Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T-y, Hsing Y-iC, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437(7059), 693-698.
| Crossref | Google Scholar |

Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey R, Giller K, Alves B, Chalk P (2008) ‘Measuring plant-associated nitrogen fixation in agricultural systems.’ p. 258. (ACIAR)

Velandia K, Reid JB, Foo E (2022) Right time, right place: the dynamic role of hormones in rhizobial infection and nodulation of legumes. Plant Communications 3(5), 100327.
| Crossref | Google Scholar |

Velandia K, Correa-Lozano A, McGuiness PM, Reid JB, Foo E (2024) Cell-layer specific roles for gibberellins in nodulation and root development. New Phytologist 242(2), 626-640.
| Crossref | Google Scholar | PubMed |

Xing X, Du H, Yang Z, Zhang H, Li N, Shao Z, Li W, Kong Y, Li X, Zhang C (2025) GmEXPA11 facilitates nodule enlargement and nitrogen fixation via interaction with GmNOD20 under regulation of GmPTF1 in soybean. Plant Science 355, 112469.
| Crossref | Google Scholar |

Yang Z, Gao Z, Zhou H, He Y, Liu Y, Lai Y, Zheng J, Li X, Liao H (2021) GmPTF1 modifies root architecture responses to phosphate starvation primarily through regulating GmEXPB2 expression in soybean. The Plant Journal 107(2), 525-543.
| Crossref | Google Scholar | PubMed |

Zhang X, Chen J-X, Lian W-T, Zhou H-W, He Y, Li X-X, Liao H (2024) Molecular module GmPTF1a/b-GmNPLa regulates rhizobia infection and nodule formation in soybean. New Phytologist 241(4), 1813-1828.
| Crossref | Google Scholar | PubMed |