Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Trichome mediated external water transport may compensate for reduced vascular efficiency in atmospheric epiphytic Bromeliaceae

Narcy Anai Pereira-Zaldívar https://orcid.org/0000-0002-9256-8669 A B , Luis David Patiño-López C , Raúl Rodríguez-García C , José Luis Andrade A , Manuel Jesús Cach-Pérez D , Celene Espadas-Manrique A , Felipe Barredo-Pool E and Casandra Reyes-García https://orcid.org/0000-0001-9847-9053 A *
+ Author Affiliations
- Author Affiliations

A Unidad de Recursos Naturales, Centro de Investigación Científica de Yucatán, Mérida, Mexico.

B Naturalis Biodiversity Center, Leiden, The Netherlands.

C Unidad de Energía Renovable, Centro de Investigación Científica de Yucatán, Mérida, Mexico.

D Departmento de Agricultura, Sociedad y Ambiente, El Colegio de la Frontera Sur (ECOSUR), Villahermosa, México.

E Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Mérida, Mexico.

* Correspondence to: creyes@cicy.mx

Handling Editor: Wieland Fricke

Functional Plant Biology 52, FP25140 https://doi.org/10.1071/FP25140
Submitted: 24 April 2025  Accepted: 25 July 2025  Published: 21 August 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Complex trichomes in the leaves of epiphytic Bromeliaceae absorb water and nutrients, while also facilitating long distance water transport along the leaf surface, a phenomenon previously characterized for two Tillandsia species. This study aimed to determine trichome traits that govern external water transport speed, and its relation to life form, xylem transport capacity and environmental conditions. Using near-infrared optical techniques, we characterized trichome-mediated transport in 19 species and analyzed its association with trichome and vascular traits, functional group, and habitat parameters. External leaf water transport was observed in 10 species, all of which were atmospheric life forms (nebulophytes and pseudobulbs). Transport speed positively correlated with trichome area, wing length, and degree of overlap. Species with higher trichome overlap had lower xylem capacity (Kx) and tracheid diameter and numbers, suggesting that the atmospheric life form is related to secure, inefficient vascular systems, which may be partly compensated with external transport. External transport was more common in species from habitats with high maximum vapor pressure deficits and low aridity indices, suggesting it enhances water uptake by rapidly redistributing water across available trichomes before evaporation can occur.

Keywords: aridity, Bromeliaceae, epiphyte, functional groups, hydraulic traits, Tillandsia, tracheids, trichome, xylem.

References

Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics International 11, 36-42.
| Google Scholar |

Adams III WW, Martin CE (1986) Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) forms in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). American Journal of Botany 73(8), 1207-1214.
| Crossref | Google Scholar |

Baccari S, Elloumi O, Chaari-Rkhis A, Fenollosa E, Morales M, Drira N, Ben Abdallah F, Fki L, Munné-Bosch S (2020) Linking leaf water potential, photosynthesis and chlorophyll loss with mechanisms of photo- and antioxidant protection in juvenile olive trees subjected to severe drought. Frontiers in Plant Science 11, 614144.
| Crossref | Google Scholar |

Ballego-Campos A, Paiva EAS (2018) Glandular trichomes on bracts of Tillandsia species (Bromeliaceae: Tillandsioideae): an ultrastructural study. Botany 96(4), 207-216.
| Google Scholar |

Ballegos-Campos A, Paiva EAS, Costa CG (2023) Structural diversity and secretion of glandular trichomes on floral bracts of Tillandsioideae (Bromeliaceae). Annals of Botany 132(1), 47-58.
| Google Scholar |

Benzing DH (1976) Bromeliad trichomes: structure, function, and ecological significance. Selbyana 1(4), 330-348.
| Google Scholar |

Benzing DH (2000) ‘Bromeliaceae: profile of an adaptative radiation.’ (Cambridge University Press: Cambridge, UK)

Benzing DH, Burt KM (1970) Foliar permeability among twenty species of the Bromeliaceae. Bulletin of the Torrey Botanical Club 97(5), 269-279.
| Crossref | Google Scholar |

Berlin GP, Miksche JP (1976) ‘Botanical microtechnique and cytochemistry.’ 3rd edn. (Iowa State University Press: Ames, Iowa, USA)

Berry ZC, Emery NC, Gotsch SG, Goldsmith GR (2019) Foliar water uptake: processes, pathways, and integration into plant water budgets. Plant, Cell & Environment 42(2), 410-423.
| Crossref | Google Scholar |

Bico J, Thiele U, Quéré D (2002) Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 206(1–3), 41-46.
| Crossref | Google Scholar |

Bolar K (2019) ‘STAT: interactive document for working with basic statistical analysis.’ (R Package Version 0.1. 0)

Brodribb TJ, Field TS, Sack L (2010) Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology 37(6), 488-498.
| Crossref | Google Scholar |

Cach-Pérez MJ, Andrade JL, Chilpa-Galván N, Tamayo-Chim M, Orellana R, Reyes-García C (2013) Climatic and structural factors influencing epiphytic bromeliad community assemblage along a gradient of water-limited environments in the Yucatan Peninsula, Mexico. Tropical Conservation Science 6(2), 283-302.
| Crossref | Google Scholar |

Cach-Pérez MJ, Andrade JL, Cetzal-Ix W, Reyes-García C (2016) Environmental influence on the inter- and intraspecific variation in the density and morphology of stomata and trichomes of epiphytic bromeliads of the Yucatan Peninsula. Botanical Journal of the Linnean Society 181(3), 441-458.
| Crossref | Google Scholar |

Chávez-Sahagún E, Andrade JL, Zotz G, Reyes-García C (2020) Dew can prolong photosynthesis and water status during drought in some epiphytic bromeliads from a seasonally dry tropical forest. Tropical Conservation Science 12(1), 1-11.
| Crossref | Google Scholar |

De Oliveira RS, De Oliveira Souza S, Aona LYS, Souza FVD, Rossi ML, De Souza EH (2022) Leaf structure of Tillandsia species (Tillandsioideae: Bromeliaceae) by light microscopy and scanning electron microscopy. Microscopy Research and Technique 85(1), 253-269.
| Crossref | Google Scholar |

Dolzmann P (1964) Elektronenmikroskopische Untersuchungen an den Saughaaren vonTillandsia usneoides (Bromeliaceae): I. Feinstruktur der Kuppelzelle. Planta 60(5), 461-472.
| Crossref | Google Scholar |

Food and Agriculture Organization of the United Nations (FAO) (2012) Global Ecological Zones for FAO Forest Reporting: 2010 Update. Forest Resources Assessment Working Paper 179. (FAO: Rome, Italy)

Franklin GL (1945) Preparation of thin sections of synthetic resins and wood-resin composites, and a new macerating method for wood. Nature 155, 51.
| Crossref | Google Scholar |

García J-L, Lobos-Roco F, Schween JH, del Río C, Osses P, Vives R, Pezoa M, Siegmund A, Latorre C, Alfaro F, Koch MA, Loehnert U (2021) Climate and coastal low-cloud dynamic in the hyperarid Atacama fog Desert and the geographic distribution of Tillandsia landbeckii (Bromeliaceae) dune ecosystems. Plant Systematics and Evolution 307, 57.
| Crossref | Google Scholar |

García-Gutiérrez E, Ortega-Escalona F, Angeles G (2020) A novel, rapid technique for clearing leaf tissues. Applications in Plant Sciences 8(9), e11391.
| Crossref | Google Scholar |

Gastwirth JL, Gel YR, Wallace Hui WL, Lyubchich V, Miao W, Noguchi K (2020) ‘Lawstat: tools for biostatistics, public policy, and law.’ (R package version 3.1 edition)

Gonçalves AZ, Mercier H, Rodrigues MA, Gobara BNK, Matiz A (2020) Trichome-mediated nutrient and water uptake in bromeliads: physiological insights and molecular mechanisms. Plant Physiology and Biochemistry 156, 345-356.
| Google Scholar |

Gravelle S, Dumais J (2020) A multi-scale model for fluid transport through a bio-inspired passive valve. The Journal of Chemical Physics 152, 014502.
| Crossref | Google Scholar |

Guevara-Escobar A, Cervantes-Jiménez M, Suzán-Azpiri H, González-Sosa E, Hernández-Sandoval L, Malda-Barrera G, Martínez-Díaz M (2011) Fog interception by Ball moss (Tillandsia recurvata). Hydrology and Earth System Sciences 15, 2509-2518.
| Crossref | Google Scholar |

Ha N, Park J, Park SH, Seo E, Lim JH, Lee SJ (2021) Domino-like water transport on Tillandsia through flexible trichome wings. New Phytologist 231(5), 1906-1922.
| Crossref | Google Scholar |

Hammer Ø, Harper DA, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 9.
| Google Scholar |

Herppich WB, Martin CE, Tötzke C, Manke I, Kardjilov N (2019) External water transport is more important than vascular transport in the extreme atmospheric epiphyte Tillandsia usneoides (Spanish moss). Plant, Cell & Environment 42(5), 1645-1656.
| Crossref | Google Scholar |

Johnson DM, Berry ZC, Baker KV, Smith DD, McCulloh KA, Domec J-C (2018) Leaf hydraulic parameters are more plastic in species that experience a wider range of leaf water potentials. Functional Ecology 32(4), 894-903.
| Crossref | Google Scholar |

Kim J, Moon MW, Kim HY (2016) Dynamics of hemiwicking. Journal of Fluid Mechanics 800, 57-71.
| Crossref | Google Scholar |

Kim JJ, Park J, Jung SY, Lee SJ (2020) Effect of trichome structure of Tillandsia usneoides on deposition of particulate matter under flow conditions. Journal of Hazardous Materials 393, 122401.
| Crossref | Google Scholar |

Kleingesinds CK, Gobara BNK, Mancilha D, Rodrigues MA, Demarco D, Mercier H (2018) Impact of tank formation on distribution and cellular organization of trichomes within Guzmania monostachia rosette. Flora 243, 11-18.
| Crossref | Google Scholar |

Lafont Rapnouil T, Gallant Canguilhem M, Julien F, Céréghino R, Leroy C (2023) Light intensity mediates phenotypic plasticity and leaf trait regionalization in a tank bromeliad. Annals of Botany 132(3), 443-454.
| Crossref | Google Scholar |

Laube S, Zotz G (2003) Which abiotic factors limit vegetative growth in a vascular epiphyte? Functional Ecology 17(5), 598-604.
| Crossref | Google Scholar |

Leroy C, Gril E, Ouali LS, Coste S, Gérard B, Maillard P, Mercier H, Stahl C (2019) Water and nutrient uptake capacity of leaf-absorbing trichomes vs. roots in epiphytic tank bromeliads. Environmental and Experimental Botany 163, 112-123.
| Crossref | Google Scholar |

Lüttge U, Klauke B, Griffiths H, Smith JAC, Stimmel K-H (1986) Comparative ecophysiology of CAM and C-3 bromeliads. 5. Gas exchange and leaf structure of the C-3 Bromeliad Pitcairnia- Integrifolia. Plant, Cell & Environment 9(5), 411-419.
| Google Scholar |

Lyu X, Li P, Jin L, Yang F, Pucker B, Wang C, Liu L, Zhao M, Shi L, Zhang Y, Yang Q, Xu K, Li X, Hu Z, Yang J, Yu J, Zhang M (2024) Tracing the evolutionary and genetic footprints of atmospheric tillandsioids transition from land to air. Nature Communications 15(1), 9599.
| Crossref | Google Scholar |

Males J, Griffiths H (2018) Economic and hydraulic divergences underpin ecological differentiation in the Bromeliaceae. Plant, Cell & Environment 41(1), 64-78.
| Crossref | Google Scholar |

Martin CE (1994) Physiological ecology of the Bromeliaceae. The Botanical Review 60, 1-82.
| Crossref | Google Scholar |

Matiz A (2019) Physiological and molecular responses of bromeliads to water stress. Journal of Plant Physiology 234–235, 56-65.
| Google Scholar |

Mercier H, Rodrigues MA, Andrade SCdS, Coutinho LL, Gobara BNK, Matiz A, Mioto PT, Gonçalves AZ (2019) Transcriptional foliar profile of the C3-CAM bromeliad Guzmania monostachia. PLoS ONE 14(10), e0224429.
| Crossref | Google Scholar |

Nobel PS (2009) ‘Physicochemical and environmental plant physiology.’ (Academic Press: Canada)

North GB, Lynch FH, Maharaj FD, Phillips CA, Woodside WT (2013) Leaf hydraulic conductance for a tank bromeliad: axial and radial pathways for moving and conserving water. Frontiers in Plant Science 4, 78.
| Crossref | Google Scholar |

Ohrui T, Nobira H, Sakata Y, Taji T, Yamamoto C, Nishida K, Yamakawa T, Sasuga Y, Yaguchi Y, Takenaga H, Tanaka S (2007) Foliar trichome- and aquaporin-aided water uptake in a drought-resistant epiphyte Tillandsia ionantha Planchon. Planta 227, 47-56.
| Crossref | Google Scholar |

Pierce S (2007) The jeweled armor of Tillandsia—Multifaceted or elongated trichomes provide photoprotection. Aliso: A Journal of Systematic and Floristic Botany 23(1), 44-52.
| Crossref | Google Scholar |

Pierce S, Maxwell K, Griffiths H, Winter K (2001) Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae. American Journal of Botany 88(8), 1371-1389.
| Crossref | Google Scholar |

Pittendrigh CS (1948) The bromeliad-Anopheles-malaria complex in Trinidad; the bromeliad flora. Evolution 2(1), 58-89.
| Crossref | Google Scholar |

R Core Team (2020) ‘R: a language and environment for statistical computing (4.0.2).’ (R Foundation for Statistical Computing) Available at https://www.r-project.org/

Raux PS, Gravelle S, Dumais J (2020) Design of a unidirectional water valve in Tillandsia. Nature Communications 11, 396.
| Crossref | Google Scholar |

Reyes-García C, Mejía-Chang M, Jones GD, Griffiths H (2008) Water vapour isotopic exchange by epiphytic bromeliads in tropical dry forests reflects niche differentiation and climatic signals. Plant, Cell & Environment 31(6), 828-841.
| Crossref | Google Scholar |

Reyes-García C, Mejia-Chang M, Griffiths H (2012) High but not dry: diverse epiphytic bromeliad adaptations to exposure within a seasonally dry tropical forest community. New Phytologist 193(3), 745-754.
| Crossref | Google Scholar |

Reyes-García C, Pereira-Zaldívar NA, Espadas-Manrique C, Tamayo-Chim M, Chilpa-Galván N, Cach-Pérez MJ, Ramírez-Medina M, Benavides AM, Hietz P, Zotz G, Andrade JL, Cardelús C, De Paula Oliveira R, Einzmann HJR, Guzmán Jacob V, Krömer T, Pinzón JP, Sarmento Cabral J, Wanek W, Woods C (2022) New proposal of epiphytic Bromeliaceae functional groups to include nebulophytes and shallow tanks. Plants 11(12), 3151.
| Crossref | Google Scholar |

Sack L, Scoffoni C (2013) Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist 198(4), 983-1000.
| Crossref | Google Scholar |

Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Cochard H, Buckley TN, McElrone AJ, Sack L (2017) Leaf vein xylem conduit diameter influences susceptibility to embolism and hydraulic decline. New Phytologist 213(3), 1076-1092.
| Crossref | Google Scholar |

Takahashi CA, Mercier H (2024) New insights into the role of the root system of epiphytic bromeliads: comparison of root and leaf trichome functions in acquisition of water and nutrients. Annals of Botany 134(5), 711-724.
| Crossref | Google Scholar |

Takahashi CA, Coutinho Neto AA, Mercier H (2022) An overview of water and nutrient uptake by epiphytic Bromeliads: new insights into the absorptive capability of leaf trichomes and roots. In ‘Progress in botany vol. 83’. (Eds U Lüttge, FM Cánovas, MC Risueño, C Leuschner, H Pretzsch) pp. 345–362. (Springer)

Winkler U, Zotz G (2009) Water uptake from the atmosphere in vascular epiphytes: the role of trichomes. Functional Ecology 23(4), 661-669.
| Google Scholar |

Zomer RJ, Xu J, Trabucco A (2022) Version 3 of the global aridity index and potential evapotranspiration database. Scientific Data 9(1), 409.
| Crossref | Google Scholar |