Register      Login
Invertebrate Systematics Invertebrate Systematics Society
Systematics, phylogeny and biogeography
RESEARCH ARTICLE

Combined molecular and morphological phylogeny of Myrtlemiris, evolution of endosomal spicules, description of two new species and Neomyrtlemiris, gen. nov. (Insecta : Heteroptera : Miridae : Orthotylinae)

Marina Cheng https://orcid.org/0000-0002-1061-9697 A B and Gerasimos Cassis https://orcid.org/0000-0003-0519-664X A
+ Author Affiliations
- Author Affiliations

A Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.

B Corresponding author. Email: marina.cheng@unsw.edu.au

Invertebrate Systematics 33(5) 719-756 https://doi.org/10.1071/IS18081
Submitted: 14 November 2018  Accepted: 24 April 2019   Published: 3 October 2019

Abstract

The mirid subfamily Orthotylinae is hyperdiverse in Australia but poorly described; this work is part of a series of papers on the documentation of this fauna. Two new species of the Australian endemic plant bug genus Myrtlemiris Cheng, Mututantri & Cassis (Heteroptera: Miridae: Orthotylinae: Orthotylini) are described as new to science: Myrtlemiris kararensis, sp. nov., and M. lochada, sp. nov. The new Australian genus and species Neomyrtlemiris picta gen. nov. et sp. nov. are also described. Myrtlemiris is analysed phylogenetically using 32 morphology-based characters, as well as molecular alignments (COI, 16S rRNA, 18S rRNA and 28S rRNA; including 1958 base pairs) with the genus found to be monophyletic based on molecular, morphological and combined analyses. Neomyrtlemiris is the sister to Myrtlemiris. Host plant association analysis demonstrated constraints to the myrtaceous tribe Chamelaucieae, with Malleostemon and Calytrix recovered as ancestral host plants. Ancestral state reconstructions were carried out on male genitalic structures, demonstrating the phylogenetic value of endosomal spicules. This work demonstrates that the Orthotylinae are a rich component of Australia’s biodiversity, particularly in the south-west of Western Australia.


References

Asquith, A. (1993). Patterns of speciation in the genus Lopidea (Heteroptera: Miridae: Orthotylinae). Systematic Entomology 18, 169–180.
Patterns of speciation in the genus Lopidea (Heteroptera: Miridae: Orthotylinae).Crossref | GoogleScholarGoogle Scholar |

Breinholt, J. W., and Kawahara, A. Y. (2013). Phylotranscriptomics: saturated third codon positions radically influence the estimation of trees based on Next-Gen data. Genome Biology and Evolution 5, 2082–2092.
Phylotranscriptomics: saturated third codon positions radically influence the estimation of trees based on Next-Gen data.Crossref | GoogleScholarGoogle Scholar | 24148944PubMed |

Carpenter, J. M. (1989). Testing scenarios: wasp social behavior. Cladistics 5, 131–144.
Testing scenarios: wasp social behavior.Crossref | GoogleScholarGoogle Scholar |

Cassis, G. (2008). The Lattinova complex of austromirine plant bugs (Hemiptera: Heteroptera: Miridae: Orthotylinae). Proceedings of the Entomological Society of Washington 110, 845–939.
The Lattinova complex of austromirine plant bugs (Hemiptera: Heteroptera: Miridae: Orthotylinae).Crossref | GoogleScholarGoogle Scholar |

Cassis, G., and Schuh, R. T. (2012). Systematics, biodiversity, biogeography, and host associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha). Annual Review of Entomology 57, 377–404.
Systematics, biodiversity, biogeography, and host associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha).Crossref | GoogleScholarGoogle Scholar | 22149267PubMed |

Cassis, G., and Symonds, C. (2014a). Systematics and host plant associations of a new genus of Acacia-inhabiting plant bugs from arid Australia (Insecta: Hemiptera: Heteroptera: Miridae: Orthotylinae). Invertebrate Systematics 28, 522–554.
Systematics and host plant associations of a new genus of Acacia-inhabiting plant bugs from arid Australia (Insecta: Hemiptera: Heteroptera: Miridae: Orthotylinae).Crossref | GoogleScholarGoogle Scholar |

Cassis, G., and Symonds, C. (2014b). Granitohyoidea calycopeplus gen. nov. and sp. nov: a new plant bug taxon (Heteroptera: Miridae) affiliated with granite outcrops in south-west Western Australia, and its Palearctic affinity and host plant associations. Austral Entomology 53, 353–362.
Granitohyoidea calycopeplus gen. nov. and sp. nov: a new plant bug taxon (Heteroptera: Miridae) affiliated with granite outcrops in south-west Western Australia, and its Palearctic affinity and host plant associations.Crossref | GoogleScholarGoogle Scholar |

Cassis, G., and Symonds, C. (2016). Plant bugs, plant interactions and the radiation of a species rich clade in south-western Australia: Naranjakotta, gen. nov. and eighteen new species (Insecta: Heteroptera: Miridae: Orthotylinae). Invertebrate Systematics 30, 95–186.
Plant bugs, plant interactions and the radiation of a species rich clade in south-western Australia: Naranjakotta, gen. nov. and eighteen new species (Insecta: Heteroptera: Miridae: Orthotylinae).Crossref | GoogleScholarGoogle Scholar |

Cassis, G., Wall, M., and Schuh, R. T. (2007). Insect biodiversity and industrializing the taxonomic process: the plant bug case study (Insecta: Heteroptera: Miridae). In ‘Taxonomy and Systematics of Species Rich Taxa: Towards the Tree of Life’. (Eds T. R. Hodkinson, J. Parnell, and S. Waldren.) pp. 193–212. (CRC Press: Boca Raton, FL.)

Cassis, G., Symonds, C., and Tatarnic, N. J. (2010). A remarkable new species of stone-dwelling Orthotylini (Heteroptera: Miridae: Orthotylinae) from Australia. Zootaxa 2485, 58–68.
A remarkable new species of stone-dwelling Orthotylini (Heteroptera: Miridae: Orthotylinae) from Australia.Crossref | GoogleScholarGoogle Scholar |

Cheng, M., Mututantri, A., and Cassis, G. (2012a). Myrtlemiris, a new genus and new species of Australian plant bugs (Insecta: Heteroptera: Miridae): systematics, phylogeny and host associations. Systematic Entomology 37, 305–331.
Myrtlemiris, a new genus and new species of Australian plant bugs (Insecta: Heteroptera: Miridae): systematics, phylogeny and host associations.Crossref | GoogleScholarGoogle Scholar |

Cheng, M., Mututantri, A., and Cassis, G. (2012b). Myrtlemiris (a new genus of Australian plant bugs (Heteroptera: Miridae: Orthotylinae): systematics, host associations and exaggerated genitalic structures). Abstract, XXIV International Congress of Entomology, Daegu, South Korea.

Chin, Y. W., and Cassis, G. (2018). Systematics and host plant associations of the Palassocoris complex (Insecta: Heteroptera: Miridae: Orthotylinae), a monophyletic suprageneric group of long-headed Australian Orthotylini, and the description of five new genera and ten new species. Invertebrate Systematics 32, 703–757.
Systematics and host plant associations of the Palassocoris complex (Insecta: Heteroptera: Miridae: Orthotylinae), a monophyletic suprageneric group of long-headed Australian Orthotylini, and the description of five new genera and ten new species.Crossref | GoogleScholarGoogle Scholar |

Damgaard, J., and Sperling, F. A. H. (2001). Phylogeny of the water strider genus Gerris Fabricius (Heteroptera: Gerridae) based on COI mtDNA, EF-1α nuclear DNA and morphology. Systematic Entomology 26, 241–254.
Phylogeny of the water strider genus Gerris Fabricius (Heteroptera: Gerridae) based on COI mtDNA, EF-1α nuclear DNA and morphology.Crossref | GoogleScholarGoogle Scholar |

Ebach, M. C., González-Orozco, C. E., Miller, J. T., and Murphy, D. J. (2015). A revised area taxonomy of phyogeographical regions within the Australian Bioregionalistation Atlas. Phytotaxa 208, 261–277.

Forero, D. (2008). Revision and phylogenetic analysis of the Hadronema group (Miridae: Orthotylinae: Orthotylini), with descriptions of new genera and new species, and comments on the Neotropical genus Tupimiris. Bulletin of the American Museum of Natural History 312, 1–172.
Revision and phylogenetic analysis of the Hadronema group (Miridae: Orthotylinae: Orthotylini), with descriptions of new genera and new species, and comments on the Neotropical genus Tupimiris.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., and Catalano, S. A. (2016). TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32, 221–238.
TNT version 1.5, including a full implementation of phylogenetic morphometrics.Crossref | GoogleScholarGoogle Scholar |

Goloboff, P. A., Farris, J. S., and Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics 24, 774–786.
TNT, a free program for phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

González-Orozco, C. E., Ebach, M. C., Laffan, S, Thornhill, A. H., Knerr, N. J., Schmidt-Lebuhn, A. N., Cargill, C. C., Clemnts, M, Nagalingum, N. S., Mishler, B. D., and Miller, J. T. (2014). Quantifying phytogeographical regions of Australia using geospatial turnover in species composition. PlosOne 9, 1–10.

Ho, S. (2010). CodonSplit (Version 1.0). Available at: http://sydney.edu.au/science/biology/meep/ [accessed 2015].

Johnson, L. A. S., and Briggs, B. G. (1984). Myrtales and Myrtaceae – a phylogenetic analysis. Annals of the Missouri Botanical Garden 71, 700–756.
Myrtales and Myrtaceae – a phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar |

Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., and Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.Crossref | GoogleScholarGoogle Scholar | 22543367PubMed |

Kelton, L. A. (1959). Male genitalia as taxonomic characters in the Miridae (Hemiptera). Canadian Entomologist 11, 1–72.

Kozub, D., Khmelik, V., Shapoval, J., Chentsov, V., and Yatsenko, S. (2008). Helicon Focus Pro. Helicon Soft Ltd., Kharkov, Ukraine.

Maddison, W. P., and Maddison, D. R. (2016). Mesquite: a modular system for evolutionary analysis (version 3.1). Available at: http://mesquiteproject.org [accessed 2016–17].

Menard, K. L., Schuh, R. T., and Woolley, J. B. (2014). Total-evidence phylogenetic analysis and reclassification of the Phylinae (Insecta: Heteroptera: Miridae), with the recognition of new tribes and subtribes and a redefinition of Phylini. Cladistics 30, 391–427.
Total-evidence phylogenetic analysis and reclassification of the Phylinae (Insecta: Heteroptera: Miridae), with the recognition of new tribes and subtribes and a redefinition of Phylini.Crossref | GoogleScholarGoogle Scholar |

Namyatova, A. A., Elias, M., and Cassis, G. (2011). A new genus and two new species of Orthotylinae (Hemiptera: Heteroptera: Miridae) from central Australia. Zootaxa 2927, 38–48.
A new genus and two new species of Orthotylinae (Hemiptera: Heteroptera: Miridae) from central Australia.Crossref | GoogleScholarGoogle Scholar |

Pagel, M. (1999). The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology 48, 612–622.
The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies.Crossref | GoogleScholarGoogle Scholar |

Preece, M., Harding, J., and West, J. G. (2014). Bush Blitz: journeys of discovery in the Australian outback. Australian Systematic Botany 27, 325–332.
Bush Blitz: journeys of discovery in the Australian outback.Crossref | GoogleScholarGoogle Scholar |

Schmid, R. (1980). Comparative anatomy and morphology of Psiloxylon and Heteropyxis, and the subfamilial and tribal classification of Myrtaceae. Taxon 29, 559–595.
Comparative anatomy and morphology of Psiloxylon and Heteropyxis, and the subfamilial and tribal classification of Myrtaceae.Crossref | GoogleScholarGoogle Scholar |

Schuh, R. T., and Weirauch, C. (2010). Myrtaceae-feeding Phylinae (Hemiptera: Miridae) from Australia: description and analysis of phylogenetic and host relationships for a monophyletic assemblage of three new genera. Bulletin of the American Museum of Natural History 334, 1–95.

Schwartz, M. D. (2011). Revision and phylogenetic analysis of the North American genus Slaterocoris Wagner with new synonymy, the description of five new species and a new genus from Mexico, and a review of the genus Scalponotatus Kelton (Heteroptera: Miridae: Orthotylinae). Bulletin of the American Museum of Natural History 354, 1–290.
Revision and phylogenetic analysis of the North American genus Slaterocoris Wagner with new synonymy, the description of five new species and a new genus from Mexico, and a review of the genus Scalponotatus Kelton (Heteroptera: Miridae: Orthotylinae).Crossref | GoogleScholarGoogle Scholar |

Schwartz, M. D., Weirauch, C., and Schuh, R. T. (2018). New genera and species of Myrtaceae-feeding Phylinae from Australia, and the description of a new species of Restiophylus (Insecta: Heteroptera: Miridae). Bulletin of the American Museum of Natural History 2018, 1–158.
New genera and species of Myrtaceae-feeding Phylinae from Australia, and the description of a new species of Restiophylus (Insecta: Heteroptera: Miridae).Crossref | GoogleScholarGoogle Scholar |

Southwood, T. R. E. (1953). The morphology and taxonomy of the genus Orthotylus Fieber (Hem., Miridae) with special reference to the British species. Transactions of the Royal Entomological Society of London 104, 415–449.
The morphology and taxonomy of the genus Orthotylus Fieber (Hem., Miridae) with special reference to the British species.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 16928733PubMed |

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 24451623PubMed |

Symonds, C. L., and Cassis, G. (2018). Systematics and analysis of the radiation of Orthotylini plant bugs associated with callitroid conifers in Australia: description of five new genera and 32 new species (Heteroptera: Miridae: Orthotylinae). Bulletin of the American Museum of Natural History 422, 1–226.
Systematics and analysis of the radiation of Orthotylini plant bugs associated with callitroid conifers in Australia: description of five new genera and 32 new species (Heteroptera: Miridae: Orthotylinae).Crossref | GoogleScholarGoogle Scholar |

Tatarnic, N. J., and Cassis, G. (2013). Surviving in sympatry: paragenital divergence and sexual mimicry between a pair of traumatically inseminating plant bugs. American Naturalist 182, 542–551.
Surviving in sympatry: paragenital divergence and sexual mimicry between a pair of traumatically inseminating plant bugs.Crossref | GoogleScholarGoogle Scholar | 24021406PubMed |

Wilson, P. G., O’Brien, M. M., Heslewood, M. M., and Quinn, C. J. (2005). Relationships within Myrtaceae sensu lato based on a matK phylogeny. Plant Systematics and Evolution 251, 3–19.
Relationships within Myrtaceae sensu lato based on a matK phylogeny.Crossref | GoogleScholarGoogle Scholar |

Xiong, B., and Kocher, T. D. (1991). Comparison of mitochondrial DNA sequences of seven morphospecies of black flies (Diptera: Simuliidae). Genome 34, 306–311.
Comparison of mitochondrial DNA sequences of seven morphospecies of black flies (Diptera: Simuliidae).Crossref | GoogleScholarGoogle Scholar | 2055453PubMed |