The tables have turned: taxonomy, systematics and biogeography of the Acropora hyacinthus (Scleractinia: Acroporidae) complex
Sage H. Rassmussen

A
B
C
D
E
F
G
H
I
J
K
L
M
Handling Editor: Allen Collins
Abstract
Genomic data have revealed that traditional coral taxonomy based on skeletal morphology does not accurately reflect the true diversity of, or systematic relationships within, the order Scleractinia. Here, we apply an integrated taxonomic approach combining molecular analysis and morphological comparison of type material with specimens collected from across the Indo-Pacific to revise the taxonomy of a clade within the species-rich and ecologically dominant reef coral genus Acropora, which includes the species Acropora hyacinthus (Dana, 1846) and related species (termed the ‘hyacinthus species complex’). Using a collection of specimens comprising preserved tissues, field images and skeletal vouchers collected from 22 regions spanning the Indian and Pacific Oceans, we generated a phylogenomic reconstruction using targeted capture of ultraconserved elements (UCEs) and exons, combined with examination of morphological characters, to generate primary species hypotheses (PSHs) for the clade. We then tested PSHs by calling Single Nucleotide Polymorphism (SNPs) from the genomic dataset to provide additional lines of evidence to support the delineation of species within the clade and revise the taxonomy of the group. Our integrated approach recovered 16 lineages sufficiently delineated to be designated as distinct species. Based on comparison of our specimens to type material and geographical distributions, we remove nine species from synonymy: A. turbinata (Verrrill, 1864), A. surculosa (Dana, 1846), A. patella (Studer, 1878), A. flabelliformis (Milne-Edwards, 1860), A. conferta (Quelch, 1886), A pectinata (Brook, 1892), A. recumbens (Brook, 1892), A. sinensis (Brook, 1893) and A. bifurcata Nemenzo, 1971. We also describe five new species: A. harriottae sp. nov. from south-eastern Australia, A. tersa sp. nov. from eastern Australia and the Western Pacific, A. nyinggulu sp. nov. from the eastern Indian Ocean, Indo-Australian Archipelago and southern Japan, A. uogi sp. nov. from the western Pacific and A. kalindae sp. nov. from north-eastern Australia. Our data reveal that the species richness within this clade of Acropora is far greater than currently assumed due to both overlooked provincialism across the Indo-Pacific as well as lumping of distinct sympatric species based on superficial morphological similarity. Given the key ecological role tabular Acropora play on Indo-Pacific reefs our findings have significant implications for reef conservation and management, for example, A. harriottae sp. nov. is restricted to a small geographical region of south-eastern Australia and is therefore at comparatively high risk of extinction.
ZooBank: urn:lsid:zoobank.org:pub:6C42546C-9253-4639-9FF4-D8D80808D78C
Keywords: coral reef, Indo-Pacific, integrative taxonomy, phylogenomics, species delimitation, tabular growth form, target capture, taxonomic revision, ultraconserved elements.
References
Adams M, Raadik TA, Burridge CP, Georges A (2014) Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room? Systematic Biology 63(4), 518-533.
| Crossref | Google Scholar | PubMed |
Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber R, Barber A, Bartsch I, Berta A, Błażewicz-Paszkowycz M, Bock P, Boxshall G, Boyko CB, Brandão SN, Bray RA, Bruce NL, Cairns SD, Chan TY, et al. (2012) The magnitude of global marine species diversity. Current Biology 22(23), 2189-2202.
| Crossref | Google Scholar | PubMed |
Baird AH, Hughes TP (2000) Competitive dominance by tabular corals: an experimental analysis of recruitment and survival of understorey assemblages. Journal of Experimental Marine Biology and Ecology 251(1), 117-132.
| Google Scholar |
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19(5), 455-477.
| Crossref | Google Scholar | PubMed |
Baums IB, Baker AC, Davies SW, Grottoli AG, Kenkel CD, Kitchen SA, Kuffner IB, LaJeunesse TC, Matz MV, Miller MW, Parkinson JE, Shantz AA (2019) Considerations for maximizing the adaptive potential of restored coral populations in the western Atlantic. Ecological Applications 29(8), e01978.
| Crossref | Google Scholar | PubMed |
Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22(3), 148-155.
| Crossref | Google Scholar | PubMed |
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114-2120.
| Crossref | Google Scholar | PubMed |
Bongaerts P, Cooke IR, Ying H, Wels D, den Haan S, Hernandez-Agreda A, Brunner CA, Dove S, Englebert N, Eyal G, Forêt S, Grinblat M, Hay KB, Harii S, Hayward DC, Lin Y, Mihaljević M, Moya A, Muir P, Sinniger F, et al. (2021) Morphological stasis masks ecologically divergent coral species on tropical reefs. Current Biology 31(11), 2286-2298.e2288.
| Crossref | Google Scholar | PubMed |
Bortolus A (2008) Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. Ambio 37(2), 114-118.
| Crossref | Google Scholar | PubMed |
Boström-Einarsson L, Babcock RC, Bayraktarov E, Ceccarelli D, Cook N, Ferse SCA, Hancock B, Harrison P, Hein M, Shaver E, Smith A, Suggett D, Stewart-Sinclair PJ, Vardi T, McLeod IM (2020) Coral restoration – A systematic review of current methods, successes, failures and future directions. PLoS ONE 15(1), e0226631.
| Crossref | Google Scholar | PubMed |
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10(4), e1003537.
| Crossref | Google Scholar | PubMed |
Bridge TCL, Luiz OJ, Kuo C-Y, Precoda K, Madin EMP, Madin JS, Baird AH (2020) Incongruence between life-history traits and conservation status in reef corals. Coral Reefs 39(2), 271-279.
| Crossref | Google Scholar |
Bridge TCL, Cowman PF, Quattrini AM, Bonito VE, Sinniger F, Harii S, et al. (2024) A tenuis relationship: traditional taxonomy obscures systematics and biogeography of the ‘Acropora tenuis’ (Scleractinia: Acroporidae) species complex. Zoological Journal of the Linnean Society 202(1), zlad062.
| Crossref | Google Scholar |
Brook G (1892) Preliminary descriptions of new species of Madrepora in the collection of the British Museum. Part II. Annals and Magazine of Natural History 10, 451-465.
| Crossref | Google Scholar |
Brook G (1893) ‘Catalogue of the madreporarian corals in the British Museum (Natural History). Vol. 1. The genus Madrepora.’ (Trustees of the British Museum: London, UK) Available at https://www.biodiversitylibrary.org/item/44856
Bruggemann F (1879) Corals: an account of the petrological, botanical, and zoological collections made in Kerguelen’s Land and Rodriguez during the Transit of Venus Expeditions, carried out by order of Her Majesty’s Government in the years 1874–75. Philosophical Transactions of the Royal Society of London 168, 569-579.
| Crossref | Google Scholar |
Bryant D, Bouckaert R, Felsenstein J, Rosenberg NA, RoyChoudhury A (2012) Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Molecular Biology and Evolution 29(8), 1917-1932.
| Crossref | Google Scholar | PubMed |
Cardoso P, Borges PA, Triantis KA, Ferrández MA, Martín JL (2011) Adapting the IUCN Red List criteria for invertebrates. Biological Conservation 144(10), 2432-2440.
| Crossref | Google Scholar |
Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17(4), 540-552.
| Crossref | Google Scholar | PubMed |
Chhatre VE, Emerson KJ (2017) StrAuto: automation and parallelization of STRUCTURE analysis. BMC Bioinformatics 18(1), 192.
| Crossref | Google Scholar | PubMed |
Cooke I, Ying H, Forêt S, Bongaerts P, Strugnell JM, Simakov O, Zhang J, Field MA, Rodriguez-Lanetty M, Bell SC, Bourne DG, van Oppen MJ, Ragan MA, Miller DJ (2020) Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts. Science Advances 6(48), eabc6318.
| Crossref | Google Scholar | PubMed |
Cowman PF, Quattrini AM, Bridge TTCL, Watkins-Colwell GJ, Fadli N, Grinblat M, Roberts TE, McFadden CS, Miller DJ, Baird AH (2020) An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Molecular Phylogenetics and Evolution 153, 106944.
| Crossref | Google Scholar | PubMed |
Cros A, Toonen RJ, Davies SW, Karl SA (2016) Population genetic structure between Yap and Palau for the coral Acropora hyacinthus. PeerJ 4, e2330.
| Crossref | Google Scholar | PubMed |
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics 27(15), 2156-2158.
| Crossref | Google Scholar | PubMed |
De Queiroz K (2007) Species concepts and species delimitation. Systematic Biology 56(6), 879-886.
| Crossref | Google Scholar | PubMed |
Derkarabetian S, Benavides LR, Giribet G (2019) Sequence capture phylogenomics of historical ethanol-preserved museum specimens: unlocking the rest of the vault. Molecular Ecology Resources 19(6), 1531-1544.
| Crossref | Google Scholar | PubMed |
Edgar GJ (2025) IUCN Red List criteria fail to recognise most threatened and extinct species. Biological Conservation 301, 110880.
| Crossref | Google Scholar |
Ehrenberg CG (1834) Beiträge zur physiologischen Kenntniss der Corallenthiere im allgemeinen, und besonders des rothen Meeres, nebst einem Versuche zur physiologischen Systematik derselben. Abhandlungen der Königlichen Akademie der Wissenschaften, Berlin 1, 225-380 [In German].
| Google Scholar |
Erickson KL, Pentico A, Quattrini AM, McFadden CS (2021) New approaches to species delimitation and population structure of anthozoans: two case studies of octocorals using ultraconserved elements and exons. Molecular Ecology Resources 21(1), 78-92.
| Crossref | Google Scholar | PubMed |
Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14(8), 2611-2620.
| Crossref | Google Scholar | PubMed |
Faircloth BC (2016) PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics 32(5), 786-788.
| Crossref | Google Scholar | PubMed |
Faircloth BC, McCormack JE, Crawford NG, Harvey MG, Brumfield RT, Glenn TC (2012) Ultraconserved elements anchor thousands of genetic markers spanning multiple evolutionary timescales. Systematic Biology 61(5), 717-726.
| Crossref | Google Scholar | PubMed |
Fisher R, O’Leary RA, Low-Choy S, Mengersen K, Knowlton N, Brainard RE, Caley MJ (2015) Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology 25(4), 500-505.
| Crossref | Google Scholar | PubMed |
Francis RM (2017) pophelper: an R package and web app to analyse and visualize population structure. Molecular Ecology Resources 17(1), 27-32.
| Crossref | Google Scholar | PubMed |
Fukami H, Budd AF, Paulay G, Solé-Cava A, Allen Chen C, Iwao K, Knowlton N (2004) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427(6977), 832-835.
| Crossref | Google Scholar | PubMed |
Furukawa M, Kitanobo S, Ohki S, Teramoto MM, Hanahara N, Morita M (2024) Integrative taxonomic analyses reveal that rapid genetic divergence drives Acropora speciation. Molecular Phylogenetics and Evolution 195, 108063.
| Crossref | Google Scholar | PubMed |
Gardner SG, Camp EF, Smith DJ, Kahlke T, Osman EO, Gendron G, Hume BCC, Pogoreutz C, Voolstra CR, Suggett DJ (2019) Coral microbiome diversity reflects mass coral bleaching susceptibility during the 2016 El Niño heat wave. Ecology and Evolution 9(3), 938-956.
| Crossref | Google Scholar | PubMed |
Gilbert KJ (2016) Identifying the number of population clusters with structure: problems and solutions. Molecular Ecology Resources 16(3), 601-603.
| Crossref | Google Scholar | PubMed |
Gold Z, Palumbi SR (2018) Long-term growth rates and effects of bleaching in Acropora hyacinthus. Coral Reefs 37(1), 267-277.
| Crossref | Google Scholar |
Gómez-Corrales M, Prada C (2020) Cryptic lineages respond differently to coral bleaching. Molecular Ecology 29(22), 4265-4273.
| Crossref | Google Scholar | PubMed |
Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32(2), 315-326.
| Crossref | Google Scholar |
Gutiérrez EE, Helgen KM (2013) Mammalogy: outdated taxonomy blocks conservation. Nature 495(7441), 314.
| Crossref | Google Scholar | PubMed |
Harvey MG, Smith BT, Glenn TC, Faircloth BC, Brumfield RT (2016) Sequence capture versus restriction site associated DNA sequencing for shallow systematics. Systematic Biology 65(5), 910-924.
| Crossref | Google Scholar |
Hending D (2024) Cryptic species conservation: a review. Biological Reviews 100, 258-274.
| Crossref | Google Scholar | PubMed |
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35(2), 518-522.
| Crossref | Google Scholar | PubMed |
Hoeksema BW, Cairns S (2025) World List of Scleractinia. In ‘World Register of Marine Species (WoRMS)’. (Flanders Marine Institute) Available at https://www.marinespecies.org/scleractinia [Verified 14 July 2025]
Hongo C, Kayanne H (2011) Key species of hermatypic coral for reef formation in the northwest Pacific during Holocene sea-level change. Marine Geology 279(1), 162-177.
| Crossref | Google Scholar |
Hoogenboom MO, Frank GE, Chase TJ, Jurriaans S, Álvarez-Noriega M, Peterson K, Critchell K, Berry KLE, Nicolet KJ, Ramsby B, Paley AS (2017) Environmental drivers of variation in bleaching severity of Acropora species during an extreme thermal anomaly. Frontiers in Marine Science 4, 376.
| Crossref | Google Scholar |
Howard SD, Bickford DP (2014) Amphibians over the edge: silent extinction risk of data deficient species. Diversity and Distributions 20(7), 837-846.
| Crossref | Google Scholar |
Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, et al. (2017) Global warming and recurrent mass bleaching of corals. Nature 543(7645), 373-377.
| Crossref | Google Scholar | PubMed |
Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, et al. (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359(6371), 80-83.
| Crossref | Google Scholar | PubMed |
International Commission on Zoological Nomenclature (2011) Coral taxon names published in ‘Corals of the world’ by J.E.N. Veron (2000): potential availability confirmed under Art. 86.1.2. Bulletin of Zoological Nomenclature 68(3), 162-166.
| Google Scholar |
Jackson ND, Carstens BC, Morales AE, O’Meara BC (2017) Species delimitation with gene flow. Systematic Biology 66(5), 799-812.
| Crossref | Google Scholar | PubMed |
Johns KA, Osborne KO, Logan M (2014) Contrasting rates of coral recovery and reassembly in coral communities on the Great Barrier Reef. Coral Reefs 33(3), 553-563.
| Crossref | Google Scholar |
Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403-1405.
| Crossref | Google Scholar | PubMed |
Jörger KM, Schrödl M (2013) How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10(1), 59.
| Crossref | Google Scholar | PubMed |
Junier T, Zdobnov EM (2010) The Newick utilities: high-throughput phylogenetic tree processing in the Unix shell. Bioinformatics 26(13), 1669-1670.
| Crossref | Google Scholar | PubMed |
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14(6), 587-589.
| Crossref | Google Scholar | PubMed |
Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281.
| Crossref | Google Scholar | PubMed |
Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14), 3059-3066.
| Crossref | Google Scholar | PubMed |
Kerry JT, Bellwood DR (2015) The functional role of tabular structures for large reef fishes: avoiding predators or solar irradiance? Coral Reefs 34, 693-702.
| Crossref | Google Scholar |
Kerry JT, Bellwood DR (2016) Competition for shelter in a high-diversity system: structure use by large reef fishes. Coral Reefs 35, 245-252.
| Crossref | Google Scholar |
Ladner JT, Palumbi SR (2012) Extensive sympatry, cryptic diversity and introgression throughout the geographic distribution of two coral species complexes. Molecular Ecology 21(9), 2224-2238.
| Crossref | Google Scholar | PubMed |
Lanfear R, Hahn MW (2024) The meaning and measure of concordance factors in phylogenomics. Molecular Biology and Evolution 41, msae214.
| Crossref | Google Scholar | PubMed |
Leaché AD, Fujita MK, Minin VN, Bouckaert RR (2014) Species delimitation using genome-wide SNP data. Systematic Biology 63(4), 534-542.
| Crossref | Google Scholar | PubMed |
Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv 2013, 1303.3997 [Preprint, published 26 May 2013].
| Crossref | Google Scholar |
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14), 1754-1760.
| Crossref | Google Scholar | PubMed |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16), 2078-2079.
| Crossref | Google Scholar | PubMed |
Mai U, Mirarab S (2018) TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 19(5), 272.
| Crossref | Google Scholar | PubMed |
Mao Y, Economo EP, Satoh N (2018) The roles of introgression and climate change in the rise to dominance of Acropora corals. Current Biology 28(21), 3373-3382.e3375.
| Crossref | Google Scholar | PubMed |
Matias A, Popovic I, Thia JA, Cooke IR, Torda G, Lukoschek V (2023) Cryptic diversity and spatial genetic variation in the coral Acropora tenuis and its endosymbionts across the Great Barrier Reef. Evolutionary Applications 16(2), 293-310.
| Crossref | Google Scholar | PubMed |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20(9), 1297-1303.
| Crossref | Google Scholar | PubMed |
Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30(5), 1188-1195.
| Crossref | Google Scholar | PubMed |
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Von Haeseler A, Lanfear R (2020a) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37(5), 1530-1534.
| Crossref | Google Scholar |
Minh BQ, Hahn MW, Lanfear R (2020b) New methods to calculate concordance factors for phylogenomic datasets. Molecular Biology and Evolution 37(9), 2727-2733.
| Crossref | Google Scholar |
Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biology 9(8), e1001127.
| Crossref | Google Scholar | PubMed |
Morais J, Tebbett SB, Morais RA, Bellwood DR (2024) Natural recovery of corals after severe disturbance. Ecology Letters 27(1), e14332.
| Crossref | Google Scholar | PubMed |
Morikawa MK, Palumbi SR (2019) Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proceedings of the National Academy of Sciences 116(21), 10586-10591.
| Crossref | Google Scholar | PubMed |
Nakabayashi A, Yamakita T, Nakamura T, Aizawa H, Kitano YF, Iguchi A, Yamano H, Nagai S, Agostini S, Teshima KM, Yasuda N (2019) The potential role of temperate Japanese regions as refugia for the coral Acropora hyacinthus in the face of climate change. Scientific Reports 9(1), 1892.
| Crossref | Google Scholar | PubMed |
Naugle MS, Denis H, Mocellin VJ, Laffy PW, Popovic I, Bay LK, Howells EJ (2024) Heat tolerance varies considerably within a reef-building coral species on the Great Barrier Reef. Communications Earth & Environment 5(1), 525.
| Crossref | Google Scholar |
Nemenzo F (1967) Systematic studies on Philippine shallow-water scleractinians: VI. Suborder Astrocoeniida. Natural and Applied Science Bulletin 20(1), 1-141.
| Google Scholar |
Nemenzo F (1971) Systematic studies on Philippine shallow-water scleractinians: VII. Additional forms. Natural and Applied Science Bulletin, University of the Philippines 23, 141-209.
| Google Scholar |
Nuñez Lendo CI (2024) Brush coral Acropora hyacinthus. In ‘The IUCN Red List of Threatened Species 2024’. e.T218764304A165910938. (International Union for Conservation of Nature and Natural Resources) Available at https://www.iucnredlist.org/species/218764304/165910938 [Verified 14 July 2025]
Ortiz JC, Pears RJ, Beeden R, Dryden J, Wolff NH, Gomez Cabrera MDC, Mumby PJ (2021) Important ecosystem function, low redundancy and high vulnerability: the trifecta argument for protecting the Great Barrier Reef’s tabular Acropora. Conservation Letters 14(5), e12817.
| Crossref | Google Scholar |
Pante E, Puillandre N, Viricel A, Arnaud-Haond S, Aurelle D, Castelin M, Chenuil A, Destombe C, Forcioli D, Valero M, Viard F, Samadi S (2015a) Species are hypotheses: avoid connectivity assessments based on pillars of sand. Molecular Ecology 24(3), 525-544.
| Crossref | Google Scholar |
Pante E, Schoelinck C, Puillandre N (2015b) From integrative taxonomy to species description: one step beyond. Systematic Biology 64(1), 152-160.
| Crossref | Google Scholar |
Pearman JK, Anlauf H, Irigoien X, Carvalho S (2016) Please mind the gap – visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Marine Environmental Research 118, 20-30.
| Crossref | Google Scholar | PubMed |
Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science 344(6187), 1246752.
| Crossref | Google Scholar | PubMed |
Plaisance L, Caley MJ, Brainard RE, Knowlton N (2011) The diversity of coral reefs: what are we missing? PLoS ONE 6(10), e25026.
| Crossref | Google Scholar | PubMed |
Pratchett MS, Berumen ML, Marnane MJ, Eagle JV, Pratchett DJ (2008) Habitat associations of juvenile versus adult butterflyfishes. Coral Reefs 27(3), 541-551.
| Crossref | Google Scholar |
Puillandre N, Modica MV, Zhang Y, Sirovich L, Boisselier M-C, Cruaud C, Holford M, Samadi S (2012) Large-scale species delimitation method for hyperdiverse groups. Molecular Ecology 21(11), 2671-2691.
| Crossref | Google Scholar | PubMed |
Quattrini AM, Faircloth BC, Dueñas LF, Bridge TCL, Brugler MR, Calixto-Botía IF, DeLeo DM, Forêt S, Herrera S, Lee SMY, Miller DJ, Prada C, Rádis-Baptista G, Ramírez-Portilla C, Sánchez JA, Rodríguez E, McFadden CS (2018) Universal target-enrichment baits for anthozoan (Cnidaria) phylogenomics: new approaches to long-standing problems. Molecular Ecology Resources 18(2), 281-295.
| Crossref | Google Scholar | PubMed |
Quattrini AM, Wu T, Soong K, Jeng M-S, Benayahu Y, McFadden CS (2019) A next generation approach to species delimitation reveals the role of hybridization in a cryptic species complex of corals. BMC Evolutionary Biology 19(1), 116.
| Crossref | Google Scholar | PubMed |
Quelch JJ (1886) Report on the reef-corals collected by H.M.S. ‘Challenger’ during the years 1873–76. Report on the scientific results of the Voyage of H.M.S. Challenger during the years 1873–1876. Zooology 16(46), 1-203.
| Google Scholar |
Raja NB, Lauchstedt A, Pandolfi JM, Kim SW, Budd AF, Kiessling W (2021) Morphological traits of reef corals predict extinction risk but not conservation status. Global Ecology and Biogeography 30(8), 1597-1608.
| Crossref | Google Scholar |
Ramírez-Portilla C, Baird A, Cowman P, Quattrini A, Harii S, Sinniger F, Flot J-F (2021) Solving the coral species delimitation conundrum. In Dryad, 8 October 2021. [Datasets] doi:10.5061/dryad.k98sf7m5x
Ramírez-Portilla C, Baird AH, Cowman PF, Quattrini AM, Harii S, Sinniger F, Flot J-F (2022) Solving the coral species delimitation conundrum. Systematic Biology 71(2), 461-475.
| Crossref | Google Scholar | PubMed |
Randall RH (2003) An annotated checklist of hydrozoan and scleractinian corals collected from Guam and other Mariana Islands. Micronesica 35(36), 121-137.
| Google Scholar |
Richards ZT, Hobbs J-PA (2015) Hybridisation on coral reefs and the conservation of evolutionary novelty. Current Zoology 61(1), 132-145.
| Crossref | Google Scholar |
Rose NH, Bay RA, Morikawa MK, Thomas L, Sheets EA, Palumbi SR (2021) Genomic analysis of distinct bleaching tolerances among cryptic coral species. Proceedings of the Royal Society of London – B. Biological Sciences 288(1960), 20210678.
| Crossref | Google Scholar | PubMed |
Rosser NL, Edyvane K, Malina AC, Underwood JN, Johnson MS (2020) Geography and spawning season drive genetic divergence among populations of the hard coral Acropora tenuis from Indonesia and Western Australia. Coral Reefs 39(4), 989-999.
| Crossref | Google Scholar |
Scrucca L, Fop M, Murphy TB, Raftery AE (2016) mclust 5: clustering, classification and density estimation using gaussian finite mixture models. The R Journal 8(1), 289-317.
| Crossref | Google Scholar | PubMed |
Sheets EA, Warner PA, Palumbi SR (2018) Accurate population genetic measurements require cryptic species identification in corals. Coral Reefs 37(2), 549-563.
| Crossref | Google Scholar |
Sheppard CR (1987) Coral species of the Indian Ocean and adjacent seas: a synonymized compilation and some regional distributional patterns. Atoll Research Bulletin 307, 1-32.
| Crossref | Google Scholar |
Studer T (1879) Zweite Abtheilung der Anthozoa Polyactinia, welche während der Reise A. M. S. Corvette Gazelle um die Erde gesammelt wurden. Monatsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin 1878, 525-550 [In German].
| Google Scholar |
Suggett DJ, Camp EF, Edmondson J, Boström-Einarsson L, Ramler V, Lohr K, Patterson JT (2019) Optimizing return-on-effort for coral nursery and outplanting practices to aid restoration of the Great Barrier Reef. Restoration Ecology 27(3), 683-693.
| Crossref | Google Scholar |
Sugihara K, Nomura K, Yokochi H, Shimoike K, Kajiwara K, Suzuki G, Kimura T (2015) 日本の有藻性イシサンゴ類~種子島編~ [‘Zooxanthellate scleractinian corals of Tanegashima Island, Japan’]. (国立環境研究所 生物·生態系環境研究センター [National Institute for Environmental Studies, Centre for Environmental Biology and Ecosystem Studies]: Tsukuba, Japan) Available at https://www.nies.go.jp/biology/data/coral.html [In Japanese]
Suzuki G, Keshavmurthy S, Hayashibara T, Wallace CC, Shirayama Y, Chen CA, Fukami H (2016) Genetic evidence of peripheral isolation and low diversity in marginal populations of the Acropora hyacinthus complex. Coral Reefs 35(4), 1419-1432.
| Crossref | Google Scholar |
Thomson SA, Pyle RL, Ahyong ST, Alonso-Zarazaga M, Ammirati J, Araya JF, Ascher JS, Audisio TL, Azevedo-Santos VM, Bailly N, Baker WJ, Balke M, Barclay M, Barrett RL, Benine RC, Bickerstaff J, Bouchard P, Bour R, Bourgoin T, Boyko CB, Breure A, Brothers DJ, Byng JW, Campbell D, Ceríaco L, Cernák I, Cerretti P, Chang CH, Cho S, Copus JM, Costello MJ, Cseh A, Csuzdi C, Culham A, D’Elía G, d’Udekem d’Acoz C, Daneliya ME, Dekker R, Dickinson EC, Dickinson TA, van Dijk PP, Dijkstra KB, Dima B, Dmitriev DA, Duistermaat L, Dumbacher JP, Eiserhardt WL, Ekrem T, Evenhuis NL, Faille A, Fernández-Triana JL, Fiesler E, Fishbein M, Fordham BG, Freitas A, Friol NR, Fritz U, Frøslev T, Funk VA, Gaimari SD, Garbino G, Garraffoni A, Geml J, Gill AC, Gray A, Grazziotin FG, Greenslade P, Gutiérrez EE, Harvey MS, Hazevoet CJ, He K, He X, Helfer S, Helgen KM, van Heteren AH, Hita Garcia F, Holstein N, Horváth MK, Hovenkamp PH, Hwang WS, Hyvönen J, Islam MB, Iverson JB, Ivie MA, Jaafar Z, Jackson MD, Jayat JP, Johnson NF, Kaiser H, Klitgård BB, Knapp DG, Kojima JI, Kõljalg U, Kontschán J, Krell FT, Krisai-Greilhuber I, Kullander S, Latella L, Lattke JE, Lencioni V, Lewis GP, Lhano MG, Lujan NK, Luksenburg JA, Mariaux J, Marinho-Filho J, Marshall CJ, Mate JF, McDonough MM, Michel E, Miranda V, Mitroiu MD, Molinari J, Monks S, Moore AJ, Moratelli R, Murányi D, Nakano T, Nikolaeva S, Noyes J, Ohl M, Oleas NH, Orrell T, Páll-Gergely B, Pape T, Papp V, Parenti LR, Patterson D, Pavlinov IY, Pine RH, Poczai P, Prado J, Prathapan D, Rabeler RK, Randall JE, Rheindt FE, Rhodin A, Rodríguez SM, Rogers DC, Roque FO, Rowe KC, Ruedas LA, Salazar-Bravo J, Salvador RB, Sangster G, Sarmiento CE, Schigel DS, Schmidt S, Schueler FW, Segers H, Snow N, Souza-Dias PGB, Stals R, Stenroos S, Douglas Stone R, Sturm CF, Štys P, Teta P, Thomas DC, Timm RM, Tindall BJ, Todd JA, Triebel D, Valdecasas AG, Vizzini A, Vorontsova MS, de Vos JM, Wagner P, Watling L, Weakley A, Welter-Schultes F, Whitmore D, Wilding N, Will K, Williams J, Wilson K, Winston JE, Wüster W, Yanega D, Yeates DK, Zaher H, Zhang G, Zhang Z-Q, Zhou H-Z (2018) Taxonomy based on science is necessary for global conservation. PLoS Biology 16(3), e2005075.
| Crossref | Google Scholar | PubMed |
Van Dam MH, Henderson JB, Esposito L, Trautwein M (2021) Genomic characterization and curation of UCEs improves species tree reconstruction. Systematic Biology 70(2), 307-321.
| Crossref | Google Scholar | PubMed |
van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. Journal of Machine Learning Research 9(11), 2579-2605.
| Google Scholar |
Verrill AE (1864) List of the polyps and corals sent by the Museum of Comparative Zoology to other institutions in exchange, with annotations. Bulletin of the Museum of Comparative Zoology 1, 29-60.
| Google Scholar |
Verrill AE (1902) Notes on corals of the genus Acropora (Madrepora Lam.) with new descriptions and figures of types, and of several new species. Transactions of the Connecticut Academy of Arts and Sciences 11, 207-266.
| Crossref | Google Scholar |
Veron JEN (1990) New Scleractinia from Japan and other Indo-West Pacific countries. Galaxea 9, 95-173.
| Google Scholar |
Veron JEN (2002) New species described in Corals of the World. Australian Institute of Marine Science Monograph Series 11, 1-206.
| Google Scholar |
Veron JEN, Done TJ (1979) Corals and coral communities of Lord Howe Island. Marine and Freshwater Research 30(2), 203-236.
| Crossref | Google Scholar |
Veron JEN, Hodgson G (1989) Annotated checklist of the hermatypic corals of the Philippines. Pacific Science 43, 234-287.
| Google Scholar |
Veron JEN, Marsh LM (1988) Hermatypic corals of Western Australia: Records and annotated species list. Records of the Western Australian Museum 29(Supp.), 1-136.
| Google Scholar |
Veron JEN, Pichon M (1976) ‘Scleractinia of Eastern Australia. Part I. Families Thamnasteriidae, Astrocoeniidae, Pocilloporidae. Australian Institute of Marine Science Monograph Series Volume 1.’ (Australian Government Publishing Service: Canberra, ACT, Australia) 10.5962/bhl.title.60617
Veron JEN, Wallace CC (1984) Scleractinia of eastern Australia. Part V. Family Acroporidae. Australian Institute of Marine Science Monograph Series 6, 1-485.
| Google Scholar |
Veron JEN, Stafford-Smith MG, Turak E, DeVantier LM (2016) Acropora spicifera (Dana, 1846). In ‘Corals of the World’, version 0.01. Available at http://www.coralsoftheworld.org/species_factsheets/species_factsheet_summary/acropora-spicifera/?version=0.01 [Verified 14 July 2025]
Wallace CC (1978) The coral genus Acropora (Scleractinia: Astrocoeniina: Acroporidae) in the central and southern Great Barrier Reef province. Memoirs of the Queensland Museum 18, 273-319.
| Google Scholar |
Wallace CC, Chen CA, Fukami H, Muir PR (2007) Recognition of separate genera within Acropora based on new morphological, reproductive and genetic evidence from Acropora togianensis, and elevation of the subgenus Isopora Studer, 1878 to genus (Scleractinia: Astrocoeniidae; Acroporidae). Coral Reefs 26(2), 231-239.
| Crossref | Google Scholar |
Wallace CC, Done BJ, Muir PR (2012) Revision and catalogue of worldwide Staghorn corals ‘Acropora’ and ‘Isopora’ (Scleractinia: Acroporidae) in the Museum of Tropical Queensland. Nature 57(1), 1-257.
| Google Scholar |
Wilson K, Li Y, Whan V, Lehnert S, Byrne K, Moore S, Pongsomboon S, Tassanakajon A, Rosenberg G, Ballment E, Fayazi Z, Swan J, Kenway M, Benzie J (2002) Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture 204(3), 297-309.
| Crossref | Google Scholar |
Zarza E, Faircloth BC, Tsai WLE, Bryson RW, Jr, Klicka J, McCormack JE (2016) Hidden histories of gene flow in highland birds revealed with genomic markers. Molecular Ecology 25(20), 5144-5157.
| Crossref | Google Scholar | PubMed |
Zayasu Y, Takeuchi T, Nagata T, Kanai M, Fujie M, Kawamitsu M, Chinen W, Shinzato C, Satoh N (2021) Genome-wide SNP genotyping reveals hidden population structure of an acroporid species at a subtropical coral island: Implications for coral restoration. Aquatic Conservation: Marine and Freshwater Ecosystems 31(9), 2429-2439.
| Crossref | Google Scholar |
Zhang C, Rabiee M, Sayyari E, Mirarab S (2018) ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19(6), 153.
| Crossref | Google Scholar | PubMed |