Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Shifts in the seagrass leaf microbiome associated with wasting disease in Zostera muelleri

V. Hurtado-McCormick https://orcid.org/0000-0001-9407-5924 A D , D. Krix B , B. Tschitschko A C , N. Siboni A , P. J. Ralph A and J. R. Seymour A
+ Author Affiliations
- Author Affiliations

A University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW 2007, Australia.

B University of Technology Sydney, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia.

C Present address: Max Planck Institute for Marine Microbiology, Celsiusstraße 1, D-28359 Bremen, Germany.

D Corresponding author. Email: valentina.hurtadomccormick@uts.edu.au

Marine and Freshwater Research 72(9) 1303-1320 https://doi.org/10.1071/MF20209
Submitted: 3 July 2020  Accepted: 15 February 2021   Published: 1 April 2021

Abstract

Seagrass wasting disease (SWD), an infection believed to be caused by Labyrinthula zosterae, has been linked to seagrass declines in several places around the world. However, there is uncertainty about the mechanisms of disease and the potential involvement of opportunistic colonising microorganisms. Using 16S rRNA gene amplicon sequencing, we compared the microbiome of SWD lesions in leaves of Zostera muelleri with communities in adjacent asymptomatic tissues and healthy leaves. The microbiome of healthy leaf tissues was dominated by Pseudomonas and Burkholderia, whereas the most predominant taxa within adjacent tissues were Pseudomonas and Rubidimonas. Members of the Saprospiraceae, potential macroalgal pathogens, were over-represented within SWD lesions. These pronounced changes in microbiome structure were also apparent when we examined the core microbiome of different tissue types. Although the core microbiome associated with healthy leaves included three operational taxonomic units (OTUs) classified as Burkholderia, Cryomorphaceae and the SAR11 clade, a single core OTU from the Arenicella was found within adjacent tissues. Burkholderia are diazotrophic microorganisms and may play an important role in seagrass nitrogen acquisition. In contrast, some members of the Arenicella have been implicated in necrotic disease in other benthic animals. Moreover, microbiome structure was maintained across sites within healthy tissues, but not within SWD lesions or the tissues immediately adjacent to lesions. Predicted functional profiles revealed increased photoautotrophic functions in SWD tissues relative to healthy leaves, but no increase in pathogenicity or virulence. Notably, we demonstrated the presence of L. zosterae in SWD lesions by polymerase chain reaction, but only in one of the two sampled locations, which indicates that other microbiological factors may be involved in the initiation or development of SWD-like symptoms. This study suggests that the dynamics of the seagrass microbiome should be considered within the diagnosis and management of SWD.

Keywords: bacteria, benthos, biodiversity, ecology, environmental monitoring, population dynamics.


References

Abrahamsson, T. R., Jakobsson, H. E., Andersson, A. F., Björkstén, B., Engstrand, L., and Jenmalm, M. C. (2014). Low gut microbiota diversity in early infancy precedes asthma at school age. Clinical and Experimental Allergy 44, 842–850.
Low gut microbiota diversity in early infancy precedes asthma at school age.Crossref | GoogleScholarGoogle Scholar | 24330256PubMed |

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
Basic local alignment search tool.Crossref | GoogleScholarGoogle Scholar | 2231712PubMed |

Amend, A., Burgaud, G., Cunliffe, M., Edgcomb, V. P., Ettinger, C. L., Gutiérrez, M. H., Heitman, J., Hom, E. F. Y., Ianiri, G., Jones, A. C., Kagami, M., Picard, K. T., Quandt, C. A., Raghukumar, S., Riquelme, M., Stajich, J., Vargas-Muniz, J., Walker, A. K., Yarden, O., and Gladfelter, A. S. (2019). Fungi in the marine environment: open questions and unsolved problems. mBio 10, e01189-18.
Fungi in the marine environment: open questions and unsolved problems.Crossref | GoogleScholarGoogle Scholar | 30837337PubMed |

Arnold, T. M., and Targett, N. M. (2002). Marine tannins: the importance of a mechanistic framework for predicting ecological roles. Journal of Chemical Ecology 28, 1919–1934.
Marine tannins: the importance of a mechanistic framework for predicting ecological roles.Crossref | GoogleScholarGoogle Scholar | 12474891PubMed |

Bagwell, C. E., La Rocque, J. R., Smith, G. W., Polson, S. W., Friez, M. J., Longshore, J. W., and Lovell, C. R. (2002). Molecular diversity of diazotrophs in oligotrophic tropical seagrass bed communities. FEMS Microbiology Ecology 39, 113–119.
Molecular diversity of diazotrophs in oligotrophic tropical seagrass bed communities.Crossref | GoogleScholarGoogle Scholar | 19709190PubMed |

Balakirev, E. S., Krupnova, T. N., and Ayala, F. J. (2012). Symbiotic associations in the phenotypically diverse brown alga Saccharina japonica. PLoS One 7, e39587.
Symbiotic associations in the phenotypically diverse brown alga Saccharina japonica.Crossref | GoogleScholarGoogle Scholar | 22745792PubMed |

Bates, D., Mächler, M., Bolker, B. M., and Walker, S. C. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1–48.
Fitting linear mixed-effects models using lme4.Crossref | GoogleScholarGoogle Scholar |

Björk, J. R., O’Hara, R. B., Ribes, M., Coma, R., and Montoya, J. M. (2018). The dynamic core microbiome: structure, stability and resistance. bioRxiv 2018, 137885.

Blakesley, B. A., Berns, D. M., Merello, M. F., Hall, M. O., and Hyniova, J. (2002). The dynamics and distribution of the slime mold Labyrinthula sp. and its potential impacts on Thalassia testudinum populations in Florida. In ‘Seagrass Management: It’s not just Nutrients! Symposium’, 22–24 August 2000, Saint Petersburg, FL, USA. (Ed. H. S. Greening.) pp. 199–207. (Tampa Bay Estuary Program: Saint Petersburg, FL, USA.)

Blum, L. K., and Mills, A. L. (1991). Microbial growth and activity during the initial stages of seagrass decomposition. Marine Ecology Progress Series 70, 73–82.
Microbial growth and activity during the initial stages of seagrass decomposition.Crossref | GoogleScholarGoogle Scholar |

Bockelmann, A., Beining, K., and Reusch, T. B. H. (2012). Widespread occurrence of endophytic Labyrinthula spp. in northern European eelgrass Zostera marina beds. Marine Ecology Progress Series 445, 109–116.
Widespread occurrence of endophytic Labyrinthula spp. in northern European eelgrass Zostera marina beds.Crossref | GoogleScholarGoogle Scholar |

Bowman, J. P. (2014). The Family Cryomorphaceae. In ‘The Prokaryotes’. (Eds E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt and F. Thompson.) pp. 539–550. (Springer.)

Brakel, J., Werner, F. J., Tams, V., Reusch, T. B. H., and Bockelmann, A. (2014). Current European Labyrinthula zosterae are not virulent and modulate seagrass (Zostera marina) defense gene expression. PLoS One 9, e92448.
Current European Labyrinthula zosterae are not virulent and modulate seagrass (Zostera marina) defense gene expression.Crossref | GoogleScholarGoogle Scholar | 24691450PubMed |

Bull, J. C., Kenyon, E. J., and Cook, K. J. (2012). Wasting disease regulates long-term population dynamics in a threatened seagrass. Oecologia 169, 135–142.
Wasting disease regulates long-term population dynamics in a threatened seagrass.Crossref | GoogleScholarGoogle Scholar | 22076311PubMed |

Burge, C. A., Kim, C. J. S., Lyles, J. M., and Harvell, C. D. (2013). Special issue oceans and humans health: the ecology of marine opportunists. Microbial Ecology 65, 869–879.
Special issue oceans and humans health: the ecology of marine opportunists.Crossref | GoogleScholarGoogle Scholar | 23420204PubMed |

Campbell, A. H., Harder, T., Nielsen, S., Kjelleberg, S., and Steinberg, P. D. (2011). Climate change and disease: bleaching of a chemically defended seaweed. Global Change Biology 17, 2958–2970.
Climate change and disease: bleaching of a chemically defended seaweed.Crossref | GoogleScholarGoogle Scholar |

Candela, M., Rampelli, S., Turroni, S., Severgnini, M., Consolandi, C., De Bellis, G., Masetti, R., Ricci, G., Pession, A., and Brigidi, P. (2012). Unbalance of intestinal microbiota in atopic children. BMC Microbiology 12, 95.
Unbalance of intestinal microbiota in atopic children.Crossref | GoogleScholarGoogle Scholar | 22672413PubMed |

Capone, D. G., and Taylor, B. F. (1980). Microbial nitrogen cycling in a seagrass community. Estuarine Perspectives 1980, 153–161.
Microbial nitrogen cycling in a seagrass community.Crossref | GoogleScholarGoogle Scholar |

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Gonzalez Peña, A., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7, 335–336.
QIIME allows analysis of high-throughput community sequencing data.Crossref | GoogleScholarGoogle Scholar | 20383131PubMed |

Chitrampalam, P., Goldberg, N., and Olsen, M. W. (2015). Labyrinthula species associated with turfgrasses in Arizona and New Mexico. European Journal of Plant Pathology 143, 485–493.
Labyrinthula species associated with turfgrasses in Arizona and New Mexico.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117–143.
Non-parametric multivariate analyses of changes in community structure.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Gorley, R. N. (2015). ‘PRIMER v7: User Manual/Tutorial’ (PRIMER-E Ltd: Plymouth, UK.)

Clarke, K. R., Gorley, R. N., Somerfield, P. J., and Warwick, R. M. (2014). ‘Change in Marine Communities: an Approach to Statistical Analysis and Interpretation’, 3rd edn. (Primer-E Ltd: Plymouth, UK.)

Closek, C. J., Sunagawa, S., DeSalvo, M. K., Piceno, Y. M., DeSantis, T. Z., Brodie, E. L., Weber, M. X., Voolstra, C. R., Andersen, G. L., and Medina, M. (2014). Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata. The ISME Journal 8, 2411–2422.
Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata.Crossref | GoogleScholarGoogle Scholar | 24950107PubMed |

Comba González, N. B., Niño Corredor, A. N., López Kleine, L., and Montoya Castaño, D. (2021). Temporal changes of the epiphytic bacteria community from the marine macroalga Ulva lactuca (Santa Marta, Colombian-Caribbean). Current Microbiology 78, 534–543.
Temporal changes of the epiphytic bacteria community from the marine macroalga Ulva lactuca (Santa Marta, Colombian-Caribbean).Crossref | GoogleScholarGoogle Scholar | 33388936PubMed |

Crump, B. C., Wojahn, J. M., Tomas, F., and Mueller, R. S. (2018). Metatranscriptomics and amplicon sequencing reveal mutualisms in seagrass microbiomes. Frontiers in Microbiology 9, 388.
Metatranscriptomics and amplicon sequencing reveal mutualisms in seagrass microbiomes.Crossref | GoogleScholarGoogle Scholar | 29599758PubMed |

Davis, M. J., Ying, Z., Brunner, B. R., Pantoja, A., and Ferwerda, F. H. (1998). Rickettsial relative associated with papaya bunchy top disease. Current Microbiology 36, 80–84.
Rickettsial relative associated with papaya bunchy top disease.Crossref | GoogleScholarGoogle Scholar | 9425244PubMed |

Dobbler, P. T., Procianoy, R. S., Mai, V., Silveira, R. C., Corso, A. L., Rojas, B. S., and Roesch, L. F. W. (2017). Low microbial diversity and abnormal microbial succession is associated with necrotizing enterocolitis in preterm infants. Frontiers in Microbiology 8, 2243.
Low microbial diversity and abnormal microbial succession is associated with necrotizing enterocolitis in preterm infants.Crossref | GoogleScholarGoogle Scholar | 29187842PubMed |

Elliott, G. N., Chen, W., Chou, J., Wang, H., Sheu, S., Perin, L., Reis, V. M., Moulin, L., Simon, M. F., Bontemps, C., Sutherland, J. M., Bessi, R., de Faria, S. M., Trinick, M. J., Prescott, A. R., Sprent, J. I., and James, E. K. (2007). Burkholderia phymatum is a highly effective nitrogen‐fixing symbiont of Mimosa spp. and fixes nitrogen ex planta. New Phytologist 173, 168–180.
Burkholderia phymatum is a highly effective nitrogen‐fixing symbiont of Mimosa spp. and fixes nitrogen ex planta.Crossref | GoogleScholarGoogle Scholar |

Fahimipour, A. K., Kardish, M. R., Lang, J. M., Green, J. L., Eisen, J., and Stachowicz, J. (2017). Global-scale structure of the eelgrass microbiome. Applied and Environmental Microbiology 83, e03391-16.
Global-scale structure of the eelgrass microbiome.Crossref | GoogleScholarGoogle Scholar | 28411219PubMed |

Feinman, S. G., Martínez, A. U., Bowen, J. L., and Tlusty, M. F. (2017). Fine-scale transition to lower bacterial diversity and altered community composition precedes shell disease in laboratory-reared juvenile American lobster. Diseases of Aquatic Organisms 124, 41–54.
Fine-scale transition to lower bacterial diversity and altered community composition precedes shell disease in laboratory-reared juvenile American lobster.Crossref | GoogleScholarGoogle Scholar | 28357985PubMed |

Fernandes, N., Steinberg, P., Rusch, D., Kjelleberg, S., and Thomas, T. (2012). Community structure and functional gene profile of bacteria on healthy and diseased thalli of the red seaweed Delisea pulchra. PLoS One 7, e50854.
Community structure and functional gene profile of bacteria on healthy and diseased thalli of the red seaweed Delisea pulchra.Crossref | GoogleScholarGoogle Scholar | 23226544PubMed |

Frank, D. N., Amand, A. L. S., Feldman, R. A., Boedeker, E. C., Harpaz, N., and Pace, N. R. (2007). Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America 104, 13780–13785.
Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases.Crossref | GoogleScholarGoogle Scholar | 17699621PubMed |

García Bernal, M., Trabal Fernández, N., Saucedo Lastra, P. E., Medina Marrero, R., and Mazón‐Suástegui, J. M. (2017). Streptomyces effect on the bacterial microbiota associated to Crassostrea sikamea oyster. Journal of Applied Microbiology 122, 601–614.
Streptomyces effect on the bacterial microbiota associated to Crassostrea sikamea oyster.Crossref | GoogleScholarGoogle Scholar | 27992100PubMed |

García-Martínez, M., López-López, A., Calleja, M. L., Marbà, N., and Duarte, C. M. (2009). Bacterial community dynamics in a seagrass (Posidonia oceanica) meadow sediment. Estuaries and Coasts 32, 276–286.
Bacterial community dynamics in a seagrass (Posidonia oceanica) meadow sediment.Crossref | GoogleScholarGoogle Scholar |

Garcias-Bonet, N., Arrieta, J. M., Duarte, C. M., and Marbà, N. (2016). Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots. Aquatic Botany 131, 57–60.
Nitrogen-fixing bacteria in Mediterranean seagrass (Posidonia oceanica) roots.Crossref | GoogleScholarGoogle Scholar |

Ghosh, U., Subhashini, P., Dilipan, E., Raja, S., Thangaradjou, T., and Kannan, L. (2012). Isolation and characterization of phosphate-solubilizing bacteria from seagrass rhizosphere soil. Journal of Ocean University of China 11, 86–92.
Isolation and characterization of phosphate-solubilizing bacteria from seagrass rhizosphere soil.Crossref | GoogleScholarGoogle Scholar |

Giesen, W. B. J. T., van-Katwijk, M. M., and den-Hartog, C. (1990). Temperature, salinity, insolation and wasting disease of eelgrass (Zostera marina L.) in the Dutch Wadden Sea in the 1930s. Netherlands Journal of Sea Research 25, 395–404.
Temperature, salinity, insolation and wasting disease of eelgrass (Zostera marina L.) in the Dutch Wadden Sea in the 1930s.Crossref | GoogleScholarGoogle Scholar |

Gilbert, J. A., Quinn, R. A., Debelius, J., Xu, Z. Z., Morton, J., Garg, N., Jansson, J. K., Dorrestein, P. C., and Knight, R. (2016). Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535, 94–103.
Microbiome-wide association studies link dynamic microbial consortia to disease.Crossref | GoogleScholarGoogle Scholar | 27383984PubMed |

Giovannoni, S. J. (2017). SAR11 bacteria: the most abundant plankton in the oceans. Annual Review of Marine Science 9, 231–255.
SAR11 bacteria: the most abundant plankton in the oceans.Crossref | GoogleScholarGoogle Scholar | 27687974PubMed |

Glasl, B., Webster, N. S., and Bourne, D. G. (2017). Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems. Marine Biology 164, 91.
Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems.Crossref | GoogleScholarGoogle Scholar |

Glöckner, F. O., Yilmaz, P., Quast, C., Gerken, J., Beccati, A., Ciuprina, A., Bruns, G., Yarza, P., Peplies, J., Westram, R., and Ludwig, W. (2017). 25 years of serving the community with ribosomal RNA gene reference databases and tools. Journal of Biotechnology 261, 169–176.
25 years of serving the community with ribosomal RNA gene reference databases and tools.Crossref | GoogleScholarGoogle Scholar | 28648396PubMed |

Govers, L. L., Man Veld, W. A., Meffert, J. P., Bouma, T. J., van Rijswick, P. C. J., Heusinkveld, J. H. T., Orth, R. J., van Katwijk, M. M., and van der Heide, T. (2016). Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems. Proceedings of the Royal Society of London – B. Biological Sciences 283, 20160812.
Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Govindarajan, M., Balandreau, J., Kwon, S., Weon, H., and Lakshminarasimhan, C. (2008). Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microbial Ecology 55, 21–37.
Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice.Crossref | GoogleScholarGoogle Scholar | 17406771PubMed |

Green, E. P., and Short, F. T. (2003). ‘World atlas of Seagrasses.’ (University of California Press: Berkeley, CA, USA.)

Groner, M. L., Burge, C. A., Couch, C. S., Kim, C. J. S., Siegmund, G., Singhal, S., Smoot, S. C., Jarrell, A., Gaydos, J. K., Harvell, C. D., and Wyllie-Echeverria, S. (2014). Host demography influences the prevalence and severity of eelgrass wasting disease. Diseases of Aquatic Organisms 108, 165–175.
Host demography influences the prevalence and severity of eelgrass wasting disease.Crossref | GoogleScholarGoogle Scholar | 24553421PubMed |

Groner, M. L., Burge, C. A., Kim, C. J. S., Rees, E., Van Alstyne, K. L., Yang, S., Wyllie-Echeverria, S., and Harvell, C. D. (2016). Plant characteristics associated with widespread variation in eelgrass wasting disease. Diseases of Aquatic Organisms 118, 159–168.
Plant characteristics associated with widespread variation in eelgrass wasting disease.Crossref | GoogleScholarGoogle Scholar | 26912046PubMed |

Hamady, M., and Knight, R. (2009). Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Research 19, 1141–1152.
Microbial community profiling for human microbiome projects: tools, techniques, and challenges.Crossref | GoogleScholarGoogle Scholar | 19383763PubMed |

Herbert, R. A. (1999). Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology Reviews 23, 563–590.
Nitrogen cycling in coastal marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 10525167PubMed |

Hernandez-Agreda, A., Gates, R. D., and Ainsworth, T. D. (2017). Defining the core microbiome in corals’ microbial soup. Trends in Microbiology 25, 125–140.
Defining the core microbiome in corals’ microbial soup.Crossref | GoogleScholarGoogle Scholar | 27919551PubMed |

Hirano, S. S., and Upper, C. D. (2000). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and epiphyte. Microbiology and Molecular Biology Reviews 64, 624–653.
Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae – a pathogen, ice nucleus, and epiphyte.Crossref | GoogleScholarGoogle Scholar | 10974129PubMed |

Hollants, J., Leliaert, F., De-Clerck, O., and Willems, A. (2013). What we can learn from sushi: a review on seaweed–bacterial associations. FEMS Microbiology Ecology 83, 1–16.
What we can learn from sushi: a review on seaweed–bacterial associations.Crossref | GoogleScholarGoogle Scholar | 22775757PubMed |

Hurtado-McCormick, V. (2019). Seagrass metagenome (Taxonomy ID: 1904484). Seagrass leaf microbiome associated with seagrass wasting disease (SWD, 16S amplicon sequencing). Accession number PRJNA542187. (National Center for Biotechnology Information, Sequence Read Archive.) Available at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA542187/ [Verified 21 August 2019].

Hurtado-McCormick, V., Kahlke, T., Petrou, K., Jeffries, T., Ralph, P. J., and Seymour, J. R. (2019). Regional and Microenvironmental Scale Characterization of the Zostera muelleri Seagrass Microbiome. Frontiers in Microbiology 10, 1011.
Regional and Microenvironmental Scale Characterization of the Zostera muelleri Seagrass Microbiome.Crossref | GoogleScholarGoogle Scholar | 31139163PubMed |

Jakobsson-Thor, S., Toth, G. B., Brakel, J., Bockelmann, A., and Pavia, H. (2018). Seagrass wasting disease varies with salinity and depth in natural Zostera marina populations. Marine Ecology Progress Series 587, 105–115.
Seagrass wasting disease varies with salinity and depth in natural Zostera marina populations.Crossref | GoogleScholarGoogle Scholar |

Jensen, S. I., Kuhl, M., and Prieme, A. (2007). Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina. FEMS Microbiology Ecology 62, 108–117.
Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina.Crossref | GoogleScholarGoogle Scholar | 17825072PubMed |

Kegler, H. F., Hassenruck, C., Kegler, P., Jennerjahn, T. C., Lukman, M., Jompa, J., and Gardes, A. (2018). Small tropical islands with dense human population: differences in water quality of near-shore waters are associated with distinct bacterial communities. PeerJ 6, e4555.
Small tropical islands with dense human population: differences in water quality of near-shore waters are associated with distinct bacterial communities.Crossref | GoogleScholarGoogle Scholar | 29761035PubMed |

Kharchenko, U., Beleneva, I., and Dmitrieva, E. (2012). Antifouling potential of a marine strain, Pseudomonas aeruginosa 1242, isolated from brass microfouling in Vietnam. International Biodeterioration & Biodegradation 75, 68–74.
Antifouling potential of a marine strain, Pseudomonas aeruginosa 1242, isolated from brass microfouling in Vietnam.Crossref | GoogleScholarGoogle Scholar |

Kumar, V., Zozaya‐Valdes, E., Kjelleberg, S., Thomas, T., and Egan, S. (2016). Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea pulchra. Environmental Microbiology 18, 3962–3975.
Multiple opportunistic pathogens can cause a bleaching disease in the red seaweed Delisea pulchra.Crossref | GoogleScholarGoogle Scholar | 27337296PubMed |

Kurilenko, V. V., Ivanova, E. P., and Mikhailov, V. V. (2007). Peculiarities of adhesion of epiphytic bacteria on leaves of the seagrass Zostera marina and on abiotic surfaces. Microbiology 76, 442–445.
Peculiarities of adhesion of epiphytic bacteria on leaves of the seagrass Zostera marina and on abiotic surfaces.Crossref | GoogleScholarGoogle Scholar |

Küsel, K., Trinkwalter, T., Drake, H. L., and Devereux, R. (2006). Comparative evaluation of anaerobic bacterial communities associated with roots of submerged macrophytes growing in marine or brackish water sediments. Journal of Experimental Marine Biology and Ecology 337, 49–58.
Comparative evaluation of anaerobic bacterial communities associated with roots of submerged macrophytes growing in marine or brackish water sediments.Crossref | GoogleScholarGoogle Scholar |

Kusstatscher, P., Cernava, T., Harms, K., Maier, J., Eigner, H., Berg, G., and Zachow, C. (2019). Disease incidence in sugar beet fields is correlated with microbial diversity and distinct biological markers. Phytobiomes Journal 3, 22–30.
Disease incidence in sugar beet fields is correlated with microbial diversity and distinct biological markers.Crossref | GoogleScholarGoogle Scholar |

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2017). lmerTest package: tests in linear mixed effects models. Journal of Statistical Software 82, 1–26.
lmerTest package: tests in linear mixed effects models.Crossref | GoogleScholarGoogle Scholar |

Lee, S. T. M., Davy, S. K., Tang, S., Fan, T., and Kench, P. S. (2015). Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress. FEMS Microbiology Ecology 91, fiv142.
Successive shifts in the microbial community of the surface mucus layer and tissues of the coral Acropora muricata under thermal stress.Crossref | GoogleScholarGoogle Scholar |

Legendre, P., and Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280.
Ecologically meaningful transformations for ordination of species data.Crossref | GoogleScholarGoogle Scholar | 28547606PubMed |

Lloyd, M. M., and Pespeni, M. H. (2018). Microbiome shifts with onset and progression of Sea Star Wasting Disease revealed through time course sampling. Scientific Reports 8, 16476.
Microbiome shifts with onset and progression of Sea Star Wasting Disease revealed through time course sampling.Crossref | GoogleScholarGoogle Scholar | 30405146PubMed |

Longford, S. R., Campbell, A. H., Nielsen, S., Case, R. J., Kjelleberg, S., and Steinberg, P. D. (2019). Interactions within the microbiome alter microbial interactions with host chemical defences and affect disease in a marine holobiont. Scientific Reports 9, 1363.
Interactions within the microbiome alter microbial interactions with host chemical defences and affect disease in a marine holobiont.Crossref | GoogleScholarGoogle Scholar | 30718608PubMed |

Louca, S., Parfrey, L. W., and Doebeli, M. (2016). Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277.
Decoupling function and taxonomy in the global ocean microbiome.Crossref | GoogleScholarGoogle Scholar | 27634532PubMed |

Lujan, K. M., Eisen, J. A., and Coil, D. A. (2017). Draft genome sequences of Pseudomonas moraviensis UCD-KL30, Vibrio ostreicida UCD-KL16, Colwellia sp. Strain UCD-KL20, Shewanella sp. Strain UCD-KL12, and Shewanella sp. Strain UCD-KL21, Isolated from Seagrass. Genome Announcements 5, e00023-17.
Draft genome sequences of Pseudomonas moraviensis UCD-KL30, Vibrio ostreicida UCD-KL16, Colwellia sp. Strain UCD-KL20, Shewanella sp. Strain UCD-KL12, and Shewanella sp. Strain UCD-KL21, Isolated from Seagrass.Crossref | GoogleScholarGoogle Scholar | 28360178PubMed |

Lundberg, D. S., Lebeis, S. L., Herrera Paredes, S., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., Glavina del Rio, T., Edgar, R. C., Eickhorst, T., Ley, R. E., Hugenholtz, P., Green Tringe, S., and Dangl, J. L. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90.
Defining the core Arabidopsis thaliana root microbiome.Crossref | GoogleScholarGoogle Scholar | 22859206PubMed |

Luo, J., Ran, W., Hu, J., Yang, X., Xu, Y., and Shen, Q. (2010). Application of bio-organic fertilizer significantly affected fungal diversity of soils. Soil Science Society of America Journal 74, 2039–2048.
Application of bio-organic fertilizer significantly affected fungal diversity of soils.Crossref | GoogleScholarGoogle Scholar |

Magoc, T., and Salzberg, S. L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963.
FLASH: fast length adjustment of short reads to improve genome assemblies.Crossref | GoogleScholarGoogle Scholar | 21903629PubMed |

Mao, D., Zhou, Q., Chen, C., and Quan, Z. (2012). Coverage evaluation of universal bacterial primers using the metagenomic datasets. BMC Microbiology 12, 66.
Coverage evaluation of universal bacterial primers using the metagenomic datasets.Crossref | GoogleScholarGoogle Scholar | 22554309PubMed |

Martin, D. L., Chiari, Y., Boone, E., Sherman, T. D., Ross, C., Wyllie-Echeverria, S., Gaydos, J. K., and Boettcher, A. A. (2016). Functional, phylogenetic and host-geographic signatures of Labyrinthula spp. provide for putative species delimitation and a global-scale view of seagrass wasting disease. Estuaries and Coasts 39, 1403–1421.
Functional, phylogenetic and host-geographic signatures of Labyrinthula spp. provide for putative species delimitation and a global-scale view of seagrass wasting disease.Crossref | GoogleScholarGoogle Scholar |

Marzinelli, E. M., Campbell, A. H., Zozaya Valdes, E., Vergés, A., Nielsen, S., Wernberg, T., de Bettignies, T., Bennett, S., Caporaso, J. G., Thomas, T., and Steinberg, P. D. (2015). Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography. Environmental Microbiology 17, 4078–4088.
Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography.Crossref | GoogleScholarGoogle Scholar | 26148974PubMed |

McIlroy, S. J., and Nielsen, P. H. (2014). The Family Saprospiraceae. In ‘The Prokaryotes’. (Eds E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt and F. Thompson.) pp. 863–889. (Springer.)

Mejia, A. Y., Rotini, A., Lacasella, F., Bookman, R., Thaller, M. C., Shem-Tov, R., Winters, G., and Migliore, L. (2016). Assessing the ecological status of seagrasses using morphology, biochemical descriptors and microbial community analyses. A study in Halophila stipulacea (Forsk.) Aschers meadows in the northern Red Sea. Ecological Indicators 60, 1150–1163.
Assessing the ecological status of seagrasses using morphology, biochemical descriptors and microbial community analyses. A study in Halophila stipulacea (Forsk.) Aschers meadows in the northern Red Sea.Crossref | GoogleScholarGoogle Scholar |

Meres, N. J., Ajuzie, C. C., Sikaroodi, M., Vemulapalli, M., Shields, J. D., and Gillevet, P. M. (2012). Dysbiosis in epizootic shell disease of the American lobster (Homarus americanus). Journal of Shellfish Research 31, 463–472.
Dysbiosis in epizootic shell disease of the American lobster (Homarus americanus).Crossref | GoogleScholarGoogle Scholar |

Meyer, J. L., Paul, V. J., and Teplitski, M. (2014). Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions. PLoS One 9, e100316.
Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions.Crossref | GoogleScholarGoogle Scholar | 24937478PubMed |

Meyer, J. L., Gunasekera, S. P., Scott, R. M., Paul, V. J., and Teplitski, M. (2016). Microbiome shifts and the inhibition of quorum sensing by Black Band Disease cyanobacteria. The ISME Journal 10, 1204–1216.
Microbiome shifts and the inhibition of quorum sensing by Black Band Disease cyanobacteria.Crossref | GoogleScholarGoogle Scholar | 26495995PubMed |

Miller, A. W., and Richardson, L. L. (2011). A meta-analysis of 16S rRNA gene clone libraries from the polymicrobial black band disease of corals. FEMS Microbiology Ecology 75, 231–241.
A meta-analysis of 16S rRNA gene clone libraries from the polymicrobial black band disease of corals.Crossref | GoogleScholarGoogle Scholar | 21114503PubMed |

Mishra, A. K., and Mohanraju, R. (2018). Epiphytic bacterial communities in seagrass meadows of oligotrophic waters of Andaman Sea. Open Access Library Journal 5, e4388.
Epiphytic bacterial communities in seagrass meadows of oligotrophic waters of Andaman Sea.Crossref | GoogleScholarGoogle Scholar |

Muehlstein, L. (1989). Perspectives on the wasting disease of eelgrass Zostera marina. Diseases of Aquatic Organisms 7, 211–221.
Perspectives on the wasting disease of eelgrass Zostera marina.Crossref | GoogleScholarGoogle Scholar |

Muehlstein, L., Porter, D., and Short, F. T. (1991). Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera Marina. Mycologia 83, 180–191.
Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera Marina.Crossref | GoogleScholarGoogle Scholar |

Nedashkovskaya, O. I., Cleenwerck, I., Zhukova, N. V., Kim, S. B., and De Vos, P. (2013). Arenicella chitinivorans sp. nov., a gammaproteobacterium isolated from the sea urchin Strongylocentrotus intermedius. International Journal of Systematic and Evolutionary Microbiology 63, 4124–4129.
Arenicella chitinivorans sp. nov., a gammaproteobacterium isolated from the sea urchin Strongylocentrotus intermedius.Crossref | GoogleScholarGoogle Scholar | 23771619PubMed |

O’Connor, N. E. (2013). Impacts of sewage outfalls on rocky shores: Incorporating scale, biotic assemblage structure and variability into monitoring tools. Ecological Indicators 29, 501–509.
Impacts of sewage outfalls on rocky shores: Incorporating scale, biotic assemblage structure and variability into monitoring tools.Crossref | GoogleScholarGoogle Scholar |

Office of Environment and Heritage (2015). State of the beaches 2014–2015. Available at https://www.environment.nsw.gov.au/research-and-publications/publications-search/state-of-the-beaches-2014-2015 [Verified 23 February 2021].

Oh, J., Freeman, A. F., Park, M., Sokolic, R., Candotti, F., Holland, S. M., Segre, J. A., Kong, H. H., NISC Comparative Sequencing Program (2013). The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Research 23, 2103–2114.
The altered landscape of the human skin microbiome in patients with primary immunodeficiencies.Crossref | GoogleScholarGoogle Scholar | 24170601PubMed |

Opsahl, S., and Benner, R. (1993). Decomposition of senescent blades of the seagrass Halodule wrightii in a subtropical lagoon. Marine Ecology Progress Series 94, 191–205.
Decomposition of senescent blades of the seagrass Halodule wrightii in a subtropical lagoon.Crossref | GoogleScholarGoogle Scholar |

Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, K. L., Hughes, R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., and Williams, S. L. (2006). A global crisis for seagrass ecosystems. Bioscience 56, 987–996.
A global crisis for seagrass ecosystems.Crossref | GoogleScholarGoogle Scholar |

Paix, B., Carriot, N., Barry-Martinet, R., Greff, S., Misson, B., Briand, J., and Culioli, G. (2020). A multi-omics analysis suggests links between the differentiated surface metabolome and epiphytic microbiota along the thallus of a Mediterranean seaweed holobiont. Frontiers in Microbiology 11, 494.
A multi-omics analysis suggests links between the differentiated surface metabolome and epiphytic microbiota along the thallus of a Mediterranean seaweed holobiont.Crossref | GoogleScholarGoogle Scholar | 32269559PubMed |

Patriquin, D. (1972). The origin of nitrogen and phosphorus for growth of the marine angiosperm Thalassia testudinum. Marine Biology 15, 35–46.
The origin of nitrogen and phosphorus for growth of the marine angiosperm Thalassia testudinum.Crossref | GoogleScholarGoogle Scholar |

Petersen, H. E. (1933). Wasting disease of eelgrass (Zostera marina). Nature 132, 1004.
Wasting disease of eelgrass (Zostera marina).Crossref | GoogleScholarGoogle Scholar |

Petersen, C., and Round, J. L. (2014). Defining dysbiosis and its influence on host immunity and disease. Cellular Microbiology 16, 1024–1033.
Defining dysbiosis and its influence on host immunity and disease.Crossref | GoogleScholarGoogle Scholar | 24798552PubMed |

Pollock, F. J., Morris, P. J., Willis, B. L., and Bourne, D. G. (2011). The urgent need for robust coral disease diagnostics. PLoS Pathogens 7, e1002183.
The urgent need for robust coral disease diagnostics.Crossref | GoogleScholarGoogle Scholar | 22028646PubMed |

Prasad, M. H. K., Ganguly, D., Paneerselvam, A., Ramesh, R., and Purvaja, R. (2019). Seagrass litter decomposition: an additional nutrient source to shallow coastal waters. Environmental Monitoring and Assessment 191, 5.
Seagrass litter decomposition: an additional nutrient source to shallow coastal waters.Crossref | GoogleScholarGoogle Scholar |

Quintanilla, E., Ramirez-Portilla, C., Adu-Oppong, B., Walljasper, G., Glaeser, S. P., Wilke, T., Reyes-Munoz, A., and Sanchez, J. A. (2018). Local confinement of disease-related microbiome facilitates recovery of gorgonian sea fans from necrotic-patch disease. Scientific Reports 8, 14636.
Local confinement of disease-related microbiome facilitates recovery of gorgonian sea fans from necrotic-patch disease.Crossref | GoogleScholarGoogle Scholar | 30279438PubMed |

Ransome, E., Rowley, S. J., Thomas, S., Tait, K., and Munn, C. B. (2014). Disturbance to conserved bacterial communities in the cold-water gorgonian coral Eunicella verrucosa. FEMS Microbiology Ecology 90, 404–416.
| 25078065PubMed |

Roder, C., Arif, C., Bayer, T., Aranda, M., Daniels, C., Shibl, A., Chavanich, S., and Voolstra, C. R. (2014). Bacterial profiling of White Plague Disease in a comparative coral species framework. The ISME Journal 8, 31–39.
Bacterial profiling of White Plague Disease in a comparative coral species framework.Crossref | GoogleScholarGoogle Scholar | 23924783PubMed |

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584.
VSEARCH: a versatile open source tool for metagenomics.Crossref | GoogleScholarGoogle Scholar | 27781170PubMed |

Romanenko, L. A., Tanaka, N., Frolova, G. M., and Mikhailov, V. V. (2010). Arenicella xantha gen. nov., sp. nov., a gammaproteobacterium isolated from a marine sandy sediment. International Hournal of Systematic and Evolutionary Microbiology 60, 1832–1836.
Arenicella xantha gen. nov., sp. nov., a gammaproteobacterium isolated from a marine sandy sediment.Crossref | GoogleScholarGoogle Scholar |

Rosenberg, E., Kushmaro, A., Kramarsky-Winter, E., Banin, E., and Yossi, L. (2009). The role of microorganisms in coral bleaching. The ISME Journal 3, 139–146.
The role of microorganisms in coral bleaching.Crossref | GoogleScholarGoogle Scholar | 19005495PubMed |

Rubal, M., Veiga, P., Reis, P. A., Bertocci, I., and Sousa-Pinto, I. (2014). Effects of subtle pollution at different levels of biological organisation on species-rich assemblages. Environmental Pollution 191, 101–110.
Effects of subtle pollution at different levels of biological organisation on species-rich assemblages.Crossref | GoogleScholarGoogle Scholar | 24816202PubMed |

Sanschagrin, S., and Yergeau, E. (2014). Next-generation sequencing of 16S ribosomal RNA gene amplicons. Journal of Visualized Experiments 90, e51709.
Next-generation sequencing of 16S ribosomal RNA gene amplicons.Crossref | GoogleScholarGoogle Scholar |

Sato, Y., Civiello, M., Bell, S. C., Willis, B. L., and Bourne, D. G. (2016). Integrated approach to understanding the onset and pathogenesis of black band disease in corals. Environmental Microbiology 18, 752–765.
Integrated approach to understanding the onset and pathogenesis of black band disease in corals.Crossref | GoogleScholarGoogle Scholar | 26549807PubMed |

Schaubeck, M., Clavel, T., Calasan, J., Lagkouvardos, I., Haange, S. B., Jehmlich, N., Basic, M., Dupont, A., Hornef, M., von-Bergen, M., Bleich, A., and Haller, D. (2016). Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut 65, 225–237.
Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence.Crossref | GoogleScholarGoogle Scholar | 25887379PubMed |

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J., and Weber, C. F. (2009). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75, 7537–7541.
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.Crossref | GoogleScholarGoogle Scholar | 19801464PubMed |

Séguin, A., Gravel, D., and Archambault, P. (2013). Effect of Disturbance Regime on Alpha and Beta Diversity of Rock Pools. Diversity (Basel) 6, 1–17.
Effect of Disturbance Regime on Alpha and Beta Diversity of Rock Pools.Crossref | GoogleScholarGoogle Scholar |

Shade, A., and Handelsman, J. (2012). Beyond the Venn diagram: the hunt for a core microbiome. Environmental Microbiology 14, 4–12.
Beyond the Venn diagram: the hunt for a core microbiome.Crossref | GoogleScholarGoogle Scholar | 22004523PubMed |

Shen, Z., Penton, C. R., Lv, N., Xue, C., Yuan, X., Ruan, Y., Li, R., and Shen, Q. (2018). Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans. Microbial Ecology 75, 739–750.
Banana Fusarium wilt disease incidence is influenced by shifts of soil microbial communities under different monoculture spans.Crossref | GoogleScholarGoogle Scholar | 28791467PubMed |

Shokralla, S., Spall, J. L., Gibson, J. F., and Hajibabaei, M. (2012). Next‐generation sequencing technologies for environmental DNA research. Molecular Ecology 21, 1794–1805.
Next‐generation sequencing technologies for environmental DNA research.Crossref | GoogleScholarGoogle Scholar | 22486820PubMed |

Short, F. T., and Wyllie-Echeverria, S. (1996). Natural and human-induced disturbance of seagrasses. Environmental Conservation 23, 17–27.
Natural and human-induced disturbance of seagrasses.Crossref | GoogleScholarGoogle Scholar |

Short, F. T., Muehlstein, L. K., and Porter, D. (1987). Eelgrass wasting disease: cause and recurrence of a marine epidemic. The Biological Bulletin 173, 557–562.
Eelgrass wasting disease: cause and recurrence of a marine epidemic.Crossref | GoogleScholarGoogle Scholar | 29320228PubMed |

Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P., and Ideker, T. (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432.
Cytoscape 2.8: new features for data integration and network visualization.Crossref | GoogleScholarGoogle Scholar | 21149340PubMed |

Steele, L., Caldwell, M., Boettcher, A., and Arnold, T. (2005). Seagrass–pathogen interactions:’pseudo-induction’of turtlegrass phenolics near wasting disease lesions. Marine Ecology Progress Series 303, 123–131.
Seagrass–pathogen interactions:’pseudo-induction’of turtlegrass phenolics near wasting disease lesions.Crossref | GoogleScholarGoogle Scholar |

Streten, C., Waite, G. K., Herrington, M. E., Hutton, D. G., Persley, D. M., and Gibb, K. S. (2005). Rickettsia-like-organisms and phytoplasmas associated with diseases in Australian strawberries. Australasian Plant Pathology 34, 157–164.
Rickettsia-like-organisms and phytoplasmas associated with diseases in Australian strawberries.Crossref | GoogleScholarGoogle Scholar |

Sullivan, B. K., Sherman, T. D., Damare, V. S., Lilje, O., and Gleason, F. H. (2013). Potential roles of Labyrinthula spp. in global seagrass population declines. Fungal Ecology 6, 328–338.
Potential roles of Labyrinthula spp. in global seagrass population declines.Crossref | GoogleScholarGoogle Scholar |

Sullivan, B. K., Robinson, K. L., Trevathan‐Tackett, S. M., Lilje, E. S., Gleason, F. H., and Lilje, O. (2017). The first isolation and characterisation of the protist Labyrinthula sp. in southeastern Australia. The Journal of Eukaryotic Microbiology 64, 504–513.
The first isolation and characterisation of the protist Labyrinthula sp. in southeastern Australia.Crossref | GoogleScholarGoogle Scholar | 28004878PubMed |

Sullivan, B. K., Trevathan-Tackett, S. M., Neuhauser, S., and Govers, L. L. (2018). Host-pathogen dynamics of seagrass diseases under future global change. Marine Pollution Bulletin 134, 75–88.
Host-pathogen dynamics of seagrass diseases under future global change.Crossref | GoogleScholarGoogle Scholar | 28965923PubMed |

Sun, F., Zhang, X., Zhang, Q., Liu, F., Zhang, J., and Gong, J. (2015). Seagrass (Zostera marina) colonization promotes the accumulation of diazotrophic bacteria and alters the relative abundances of specific bacterial lineages involved in benthic carbon and sulfur cycling. Applied and Environmental Microbiology 81, 6901–6914.
Seagrass (Zostera marina) colonization promotes the accumulation of diazotrophic bacteria and alters the relative abundances of specific bacterial lineages involved in benthic carbon and sulfur cycling.Crossref | GoogleScholarGoogle Scholar | 26209674PubMed |

Sunagawa, S., DeSantis, T. Z., Piceno, Y. M., Brodie, E. L., DeSalvo, M. K., Voolstra, C. R., Weil, E., Andersen, G. L., and Medina, M. (2009). Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. The ISME Journal 3, 512–521.
Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata.Crossref | GoogleScholarGoogle Scholar | 19129866PubMed |

Sutherland, K. P., Porter, J. W., and Torres, C. (2004). Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Marine Ecology Progress Series 266, 273–302.
Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals.Crossref | GoogleScholarGoogle Scholar |

Tolli, J. D., Sievert, S. M., and Taylor, C. D. (2006). Unexpected diversity of bacteria capable of carbon monoxide oxidation in a coastal marine environment, and contribution of the Roseobacter-associated clade to total CO oxidation. Applied and Environmental Microbiology 72, 1966–1973.
Unexpected diversity of bacteria capable of carbon monoxide oxidation in a coastal marine environment, and contribution of the Roseobacter-associated clade to total CO oxidation.Crossref | GoogleScholarGoogle Scholar | 16517644PubMed |

Trevathan-Tackett, S. M., Lauer, N., Loucks, K., Rossi, A. M., and Ross, C. (2013). Assessing the relationship between seagrass health and habitat quality with wasting disease prevalence in the Florida Keys. Journal of Experimental Marine Biology and Ecology 449, 221–229.
Assessing the relationship between seagrass health and habitat quality with wasting disease prevalence in the Florida Keys.Crossref | GoogleScholarGoogle Scholar |

Trevathan-Tackett, S. M., Seymour, J. R., Nielsen, D. A., Macreadie, P. I., Jeffries, T. C., Sanderman, J., Baldock, J., Howes, J. M., Steven, A. D., and Ralph, P. J. (2017). Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions. FEMS Microbiology Ecology 93, fix033.
Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions.Crossref | GoogleScholarGoogle Scholar | 28334391PubMed |

Trevathan-Tackett, S. M., Sullivan, B. K., Robinson, K., Lilje, O., Macreadie, P. I., and Gleason, F. H. (2018). Pathogenic Labyrinthula associated with Australian seagrasses: considerations for seagrass wasting disease in the southern hemisphere. Microbiological Research 206, 74–81.
Pathogenic Labyrinthula associated with Australian seagrasses: considerations for seagrass wasting disease in the southern hemisphere.Crossref | GoogleScholarGoogle Scholar | 29146262PubMed |

Trevathan-Tackett, S. M., Jeffries, T. C., Macreadie, P. I., Manojlovic, B., and Ralph, P. (2020). Long-term decomposition captures key steps in microbial breakdown of seagrass litter. The Science of the Total Environment 705, 135806.
Long-term decomposition captures key steps in microbial breakdown of seagrass litter.Crossref | GoogleScholarGoogle Scholar | 31838420PubMed |

Tujula, N. A., Crocetti, G. R., Burke, C., Thomas, T., Holmström, C., and Kjelleberg, S. (2010). Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. The ISME Journal 4, 301–311.
Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga.Crossref | GoogleScholarGoogle Scholar | 19829319PubMed |

Ugarelli, K., Laas, P., and Stingl, U. (2018). The microbial communities of leaves and roots associated with turtle grass (Thalassia testudinum) and manatee grass (Syringodium filliforme) are distinct from seawater and sediment communities, but are similar between species and sampling sites. Microorganisms 7, 4.
The microbial communities of leaves and roots associated with turtle grass (Thalassia testudinum) and manatee grass (Syringodium filliforme) are distinct from seawater and sediment communities, but are similar between species and sampling sites.Crossref | GoogleScholarGoogle Scholar |

Vergeer, L. H. T., and den-Hartog, C. (1994). Omnipresence of Labyrinthulaceae in seagrasses. Aquatic Botany 48, 1–20.
Omnipresence of Labyrinthulaceae in seagrasses.Crossref | GoogleScholarGoogle Scholar |

Vergeer, L. H. T., and Develi, A. (1997). Phenolic acids in healthy and infected leaves of Zostera marina and their growth-limiting properties towards Labyrinthula zosterae. Aquatic Botany 58, 65–72.
Phenolic acids in healthy and infected leaves of Zostera marina and their growth-limiting properties towards Labyrinthula zosterae.Crossref | GoogleScholarGoogle Scholar |

Vergeer, L. H. T., Aarts, T. L., and de-Groot, J. D. (1995). The ‘wasting disease’ and the effect of abiotic factors (light intensity, temperature, salinity) and infection with Labyrinthula zosterae on the phenolic content of Zostera marina shoots. Aquatic Botany 52, 35–44.
The ‘wasting disease’ and the effect of abiotic factors (light intensity, temperature, salinity) and infection with Labyrinthula zosterae on the phenolic content of Zostera marina shoots.Crossref | GoogleScholarGoogle Scholar |

Vonaesch, P., Anderson, M., and Sansonetti, P. J. (2018). Pathogens, microbiome and the host: emergence of the ecological Koch’s postulates. FEMS Microbiology Reviews 42, 273–292.
Pathogens, microbiome and the host: emergence of the ecological Koch’s postulates.Crossref | GoogleScholarGoogle Scholar | 29325027PubMed |

Walker, A. K., and Campbell, J. (2009). First records of the seagrass parasite Plasmodiophora diplantherae from the northcentral Gulf of Mexico. Gulf and Caribbean Research 21, 63–65.
First records of the seagrass parasite Plasmodiophora diplantherae from the northcentral Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Walker, D. I., Pergent, G., and Fazi, S. (2001). Seagrass decomposition. In ‘Global Segrass Research Methods’. (Eds F. T. Short and R. G. Coles.) pp. 313–324. (Elsevier.)

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 12377–12381.
Accelerating loss of seagrasses across the globe threatens coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 19587236PubMed |

Webster, N. S. (2007). Sponge disease: a global threat? Environmental Microbiology 9, 1363–1375.
Sponge disease: a global threat?Crossref | GoogleScholarGoogle Scholar | 17504474PubMed |

Webster, N. S., Xavier, J. R., Freckelton, M., Motti, C. A., and Cobb, R. (2008). Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak. Environmental Microbiology 10, 3366–3376.
Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak.Crossref | GoogleScholarGoogle Scholar | 18783385PubMed |

Weidner, S., Arnold, W., Stackebrandt, E., and Pühler, A. (2000). Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit rRNA gene approach. Microbial Ecology 39, 22–31.
Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit rRNA gene approach.Crossref | GoogleScholarGoogle Scholar | 10790514PubMed |

Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J. (1991). 16S Ribosomal DNA Amplification for Phylogenetic Study. Journal of Bacteriology 173, 697–703.
16S Ribosomal DNA Amplification for Phylogenetic Study.Crossref | GoogleScholarGoogle Scholar | 1987160PubMed |

Welsh, D. T. (2000). Nitrogen fixation in seagrass meadows: Regulation, plant-bacteria interactions and significance to primary productivity. Ecology Letters 3, 58–71.
Nitrogen fixation in seagrass meadows: Regulation, plant-bacteria interactions and significance to primary productivity.Crossref | GoogleScholarGoogle Scholar |

Whitten, M. M. A., Davies, C. E., Kim, A., Tlusty, M., Wootton, E. C., Chistoserdov, A., and Rowley, A. F. (2014). Cuticles of European and American lobsters harbor diverse bacterial species and differ in disease susceptibility. MicrobiologyOpen 3, 395–409.
Cuticles of European and American lobsters harbor diverse bacterial species and differ in disease susceptibility.Crossref | GoogleScholarGoogle Scholar |

Yoon, J., Adachi, K., and Kasai, H. (2015). Isolation and characterization of a novel marine Bacteroidetes as Algitalea ulvae gen. nov., sp. nov., isolated from the green alga Ulva pertusa. Antonie van Leeuwenhoek 108, 505–513.
Isolation and characterization of a novel marine Bacteroidetes as Algitalea ulvae gen. nov., sp. nov., isolated from the green alga Ulva pertusa.Crossref | GoogleScholarGoogle Scholar | 26063306PubMed |

Young, E. L. (1943). Studies on Labyrinthula. The etiologic agent of the wasting disease of eel‐grass. American Journal of Botany 30, 586–593.
Studies on Labyrinthula. The etiologic agent of the wasting disease of eel‐grass.Crossref | GoogleScholarGoogle Scholar |

Zozaya‐Valdés, E., Egan, S., and Thomas, T. (2015). A comprehensive analysis of the microbial communities of healthy and diseased marine macroalgae and the detection of known and potential bacterial pathogens. Frontiers in Microbiology 6, 146.
A comprehensive analysis of the microbial communities of healthy and diseased marine macroalgae and the detection of known and potential bacterial pathogens.Crossref | GoogleScholarGoogle Scholar | 25759688PubMed |

Zozaya‐Valdés, E., Roth‐Schulze, A. J., Egan, S., and Thomas, T. (2017). Microbial community function in the bleaching disease of the marine macroalgae Delisea pulchra. Environmental Microbiology 19, 3012–3024.
Microbial community function in the bleaching disease of the marine macroalgae Delisea pulchra.Crossref | GoogleScholarGoogle Scholar | 28419766PubMed |