Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Seasonal dynamics of abundance and biomass of cyanobacteria in the periphyton and epilithon in Karantinnaya Bay (northern Black Sea) in relation to physicochemical factors of the environment

Ekaterina Miroshnichenko https://orcid.org/0000-0001-7985-9747 A * , Sergey Kapranov A , Natalia Rodionova A and Anastasiia Blaginina A
+ Author Affiliations
- Author Affiliations

A A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Nakhimov Avenue, 2, Sevastopol, Russian Federation.

* Correspondence to: essmiroshnichenko@ibss-ras.ru

Handling Editor: Daniel Roelke

Marine and Freshwater Research 76, MF24202 https://doi.org/10.1071/MF24202
Submitted: 13 September 2024  Accepted: 16 April 2025  Published: 6 June 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing

Abstract

Context

The influence of environmental factors on the quantitative characteristics and structure of cyanobacterial communities within marine microbial mats remains understudied.

Aims

A comparative analysis of the community structure and seasonal dynamics of quantitative parameters of cyanobacteria in periphyton and epilithon in Karantinnaya Bay in the Black Sea, linking them to the environmental factors.

Methods

The total number and biomass of cyanobacteria were quantified on the basis of established methods for the benthic cyanobacteria.

Key results

The abundance and biomass of cyanobacteria were 0.38 × 106–4.20 × 106 cells cm−2 in periphyton and 0.004 × 106–0.158 × 106 cells cm−2 in epilithon, 0.0035–0.160 mg cm−2 in periphyton and 0.00002–0.004 mg cm−2 in epilithon. Maximum values were recorded in November for periphyton and August for epilithon; minimum values were recorded in March. Thin filamentous cyanobacteria are more responsible for changes in abundance, and biomass is determined by thick filamentous species, and in their absence, by unicellular cyanobacteria.

Conclusions

Cyanobacterial communities in periphyton and epilithon differed in density, seasonal dynamics, dominant species composition and response to the nutrient contents. Nitrogen, phosphorus and their ratio at optimal pH were most important for cyanobacteria, but the requirements for certain nutrients varied between biotopes.

Implications

This study will clarify microbial assemblages’ ecological roles in coastal ecosystems and their utility as sensitive biomonitoring indicators.

Keywords: biofilms, Black Sea, coastal zone, cyanobacteria, morphological groups, partial least squares regression, quantitative parameters, redundancy analysis.

References

Anderson MJ, Gorley RN, Clarke KR (2008) ‘PERMANOVA+ for PRIMER: guide to software and statistical methods’, 1st edn. (PRIMER-E: Plymouth, UK)

Andreeva NA (2022) Мониторинг состава цианобактерий перифитона и эпилитона прибрежного мелководья (Черное море, Севастополь) [Monitoring the composition of periphyton and epiliton cyanobacteria in the coastal shallow water (Black Sea, Sevastopol)]. Системы контроля окружающей среды [Monitoring Systems of Environment] 1(47), 74-80 [In Russian with title, abstract and keywords in Russian and English].
| Crossref | Google Scholar |

Andreeva NA, Melnikov VV, Snarskaya DD (2020) The role of cyanobacteria in marine ecosystems. Russian Journal of Marine Biology 46(3), 154-165.
| Crossref | Google Scholar |

Aytan Ü, Pogojeva M, Simeonova A (2020) ‘Marine litter in the Black Sea.’ Publication Number 56. (TUDAV, Turkish Marine Research Foundation: Istanbul, Turkey)

Bano A, Siddiqui PJA (2003) Intertidal cyanobacterial diversity on a rocky shore at Buleji near Karachi, Pakistan. Pakistan Journal of Botany 35(1), 27-36.
| Google Scholar |

Barinova SS, Medvedeva LA, Anissimova OV (2006) ‘Биоразнообразие водорослей-индикаторов окружающей среды.’ [‘Diversity of algal indicators in environmental assessment.’] (Pilies Studio: Tel Aviv, Israel) [In Russian]

Berdalet E, Tester P, Zingone A (Eds) (2012) ‘Global ecology and oceanography of harmful algal blooms, GEOHAB core research project: HABs in benthic systems.’ (IOC of UNESCO: Paris, France; and SCOR: Newark, DE, USA)

Berdalet E, Tester PA, Chinain M, Fraga S, Lemée R, Litaker W, Penna A, Usup G, Vila M, Zingone A (2017) Harmful algal blooms in benthic systems: recent progress and future research. Oceanography 30(1), 36-45.
| Crossref | Google Scholar |

Bertani I, Steger CE, Obenour DR, Fahnenstiel GL, Bridgeman TB, Johengen TH, Sayers MJ, Shuchman RA, Scavia D (2017) Tracking cyanobacteria blooms: do different monitoring approaches tell the same story? Science of The Total Environment 575, 294-308.
| Crossref | Google Scholar | PubMed |

Blaginina A, Balycheva D, Miroshnichenko E, Ryabushko L, Kapranov S, Barinova S, Lishaev D (2023) Does the elemental composition of rock surfaces affect marine benthic communities of diatoms and cyanobacteria? Journal of Marine Science and Engineering 11, 1569.
| Crossref | Google Scholar |

Blank LM (2012) The cell and P: from cellular function to biotechnological application. Current Opinion in Biotechnology 23(6), 846-851.
| Crossref | Google Scholar | PubMed |

Bonilla S, Aguilera A, Aubriot L, Huszar V, Almanza V, Haakonsson S, Izaguirre I, O’Farrell I, Salazar A, Becker V, Cremella B, Ferragut C, Hernandez E, Palacio H, Rodrigues LC, Sampaio da Silva LH, Santana LM, Santos J, Somma A, Ortega L, Antoniades D (2023) Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas. Harmful Algae 121, 102367.
| Crossref | Google Scholar |

Brierley B, Carvalho L, Davies S, Krokowski J (2007) Guidance on the quantitative analysis of phytoplankton in freshwater samples. In ‘Phytoplankton classification tool (Phase 2), Final Report, Project WFD80’. (Eds L Carvalho, B Dudley, I Dodkins, et al.) p. 24. (SNIFFER: Edinburgh, UK)

Brocke HJ, Piltz B, Herz N, Abed RMM, Palinska KA, John U, den Haan J, de Beer D, Nugues MM (2018) Nitrogen fixation and diversity of benthic cyanobacterial mats on coral reefs in Curaçao. Coral Reefs 37, 861-874.
| Crossref | Google Scholar |

Bullerjahn GS, McKay RM, Davis TW, Baker DB, Boyer GL, D’Anglada LV, Doucette GJ, Ho JC, Irwin EG, Kling CL, Kudela RM, Kurmayer R, Michalak AM, Ortiz JD, Otten TG, Paerl HW, Qin B, Sohngen BL, Stumpf RP, Visser PM, Wilhelm SW (2016) Global solutions to regional problems: collecting global expertise to address the problem of harmful cyanobacterial blooms. A Lake Erie case study. Harmful Algae 54, 223-238.
| Crossref | Google Scholar | PubMed |

Cărăuş I (2012) ‘Algae of Romania. A distributional checklist of actual algae’, version 2.3, 3rd revision. (University of Bacau: Bacau, Romania)

Caroppo C (2015) Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodiversity and Conservation 24, 949-971.
| Crossref | Google Scholar |

Caruso G, Azzaro M, Caroppo C, Decembrini F, Monticelli LS, Leonardi M, Maimone G, Zaccone R, La Ferla R (2016) Microbial community and its potential as descriptor of environmental status. ICES Journal of Marine Science 73(9), 2174-2177.
| Crossref | Google Scholar |

Charpy-Roubaud C, Larkum AWD (2005) Dinitrogen fixation by exposed communities on the rim of Tikehau Atoll (Tuamotu Archipelago, French Polynesia). Coral Reefs 24, 622-628.
| Crossref | Google Scholar |

Charpy L, Palinska KA, Casareto B, Langlade MJ, Suzuki Y, Abed RMM, Golubic S (2010) Dinitrogen-fixing cyanobacteria in microbial mats of two shallow coral reef ecosystems. Microbial Ecology 59, 174-186.
| Crossref | Google Scholar | PubMed |

Charpy L, Palinska KA, Abed RMM, Langlade MJ, Golubic S (2012) Factors influencing microbial mat composition, distribution and dinitrogen fixation in three western Indian Ocean coral reefs. European Journal of Phycology 47, 51-66.
| Crossref | Google Scholar |

Chorus I, Welker M (2021) ‘Toxic cyanobacteria in water’, 2nd edn. (CRC Press: Boca Raton, FL, USA; and World Health Organization: Geneva, Switzerland)

Cissell EC, Eckrich CE, McCoy SJ (2022) Cyanobacterial mats as benthic reservoirs and vectors for coral black band disease pathogens. Ecological Applications 32, e2692.
| Crossref | Google Scholar |

Descy JP, Stoyneva-Gärtner MP, Uzunov BA, Dimitrova PH, Pavlova VTs, Gärtner G (2018) Studies on cyanoprokaryotes of the water bodies along the Bulgarian Black Sea Coast (1890–2017): a review, with special reference to new, rare and harmful taxa. Acta Zoologica Bulgarica 11, 43-52.
| Google Scholar |

Díez B, Bauer K, Bergman B (2007) Epilithic cyanobacterial communities of a marine tropical beach rock (Heron Island, Great Barrier Reef): diversity and diazotrophy. Applied and Environmental Microbiology 73(11), 3656-3668.
| Crossref | Google Scholar | PubMed |

Dobretsov S, Jeremy C, Thomason JC, David N, Williams DN (2014) ‘Biofouling methods.’ (Wiley) doi:10.1002/9781118336144

Dobretsov S, Coutinho R, Rittschof D, Salta M, Ragazzola F, Hellio C (2019) The oceans are changing: impact of ocean warming and acidification on biofouling communities. Biofouling 35(5), 585-595.
| Crossref | Google Scholar | PubMed |

Duan Z, Tan X, Paerl HW, Van de Waal DB (2021) Ecological stoichiometry of functional traits in a colonial harmful cyanobacterium. Limnology and Oceanography 66, 2051-2062.
| Crossref | Google Scholar |

Duan Z, Tan X, Shi L, Zeng Q, Ali I, Zhu R, Chen H, Parajuli K (2023) Phosphorus accumulation in extracellular polymeric substances (EPS) of colony-forming cyanobacteria challenges imbalanced nutrient reduction strategies in eutrophic lakes. Environmental Science & Technology 57(4), 1600-1612.
| Crossref | Google Scholar | PubMed |

Echenique-Subiabre I, Villeneuve A, Golubic S, Turquet J, Humbert J-F, Gugger M (2015) Influence of local and global environmental parameters on the composition of cyanobacterial mats in a tropical lagoon. Microbial Ecology 69, 234-244.
| Crossref | Google Scholar | PubMed |

Flemming H-C (2016) EPS – then and now. Microorganisms 4, 41.
| Crossref | Google Scholar |

Flemming H-C, Wingender J, Griebe T, Mayer C (2001) Physico-chemical properties of biofilms. In ‘Biofilms: recent advances in their study and control’. (Ed. LV Evans) pp. 19–34. (Harwood Academic Publishers: Amsterdam, Netherlands)

Gaget V, Hobson P, Keulen A, Newton K, Monis P, Humpage AR, Weyrich LS, Brookes JD (2020) Toolbox for the sampling and monitoring of benthic cyanobacteria. Water Research 169, 115222.
| Crossref | Google Scholar |

Gaysina LA, Saraf A, Singh P (2019) Cyanobacteria in diverse habitats. In ‘Cyanobacteria. From basic science to applications’. (Eds AK Mishra, DN Tiwari, AN Rai) pp. 1–28. (Academic Press, Elsevier Inc.) 10.1016/B978-0-12-814667-5.00001-5

Goode SL, Rowden AA, Bowden DA, Clark MR, Stephenson F (2022) Using patch characteristics of benthic communities derived from habitat suitability modeling to inform spatial management of the marine environment. In ‘Proceedings of the GeoHAB’, 16–20 May 2022, Venice, Italy. p. 122. (CNR-Instutute of Marine Sciences) Available at https://geohab.org/wp-content/uploads/2022/05/Abstract_Volume_GEOHAB2022.pdf [Abstract]

Gorbushina AA (2007) Life on the rocks. Environmental Microbiology 9(7), 1613-1631.
| Crossref | Google Scholar | PubMed |

Goshtasbi H, Atazadeh E, Fathi M, Movafeghi A (2022) Using physicochemical and biological parameters for the evaluation of water quality and environmental conditions in international wetlands on the southern part of Lake Urmia, Iran. Environmental Science and Pollution Research 29, 18805-18819.
| Crossref | Google Scholar | PubMed |

Graham AA, McCaughan DJ, McKee FS (1988) Measurement of surface area of stones. Hydrobiologia 157, 85-87.
| Crossref | Google Scholar |

Grasshoff K, Kremling K, Ehrhardt M (1999) ‘Methods of seawater analysis’, 3rd edn. (Wiley-VCH: Weinheim, Germany)

Guerrero R, Berlanga M (2016) From the cell to the ecosystem: the physiological evolution of symbiosis. Evolutionary Biology 43, 543-552.
| Crossref | Google Scholar |

Hallegraeff GM, Anderson DM, Belin C, Bottein M-YD, Bresnan E, Chinain M, Enevoldsen H, Iwataki M, Karlson B, McKenzie CH, Sunesen I, Pitcher GC, Provoost P, Richardson A, Schweibold L, Tester PA, Trainer VL, Yñiguez AT, Zingone A (2021) Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Communications Earth & Environment 2, 117.
| Crossref | Google Scholar |

Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education. Palaeontologia Electronica 4, 1-9.
| Google Scholar |

Hauer FR, Lamberti GA (2011) ‘Methods in stream ecology.’ (Academic Press, Elsevier Inc.) 10.1016/B978-0-12-332908-0.X5001-3

Hoffman L (1999) Marine cyanobacteria in tropical regions: diversity and ecology. European Journal of Phycology 34(4), 371-379.
| Crossref | Google Scholar |

Igwaran A, Kayode AJ, Moloantoa KM, Khetsha ZP, Unuofin JO (2024) Cyanobacteria harmful algae blooms: causes, impacts, and risk management. Water, Air, & Soil Pollution 235, 71.
| Crossref | Google Scholar |

Inabe K, Miichi A, Matsuda M, Yoshida T, Kato Y, Hidese R, Kondo A, Hasunuma T (2021) Nitrogen availability affects the metabolic profile in cyanobacteria. Metabolites 11, 867.
| Crossref | Google Scholar |

Jouanneau S, Recoules L, Durand MJ, Boukabache A, Picot V, Primault Y, Lakel A, Sengelin M, Barillon B, Thouand G (2014) Methods for assessing biochemical oxygen demand (BOD): a review. Water Research 49, 62-82.
| Crossref | Google Scholar | PubMed |

Kapranov SV, Kovrigina NP, Troshchenko OA, Rodionova NY (2020) Long-term variations of thermohaline and hydrochemical characteristics in the mussel farm area in the coastal waters off Sevastopol (Black Sea) in 2001–2018. Continental Shelf Research 206, 104185.
| Crossref | Google Scholar |

Komárek J (2013) Cyanoprokaryota: Part 3. Heterocytous Genera. In ‘Süßwasserflora von Mitteleuropa. Vol. 19/3’. (Eds B Büdel, L Krienitz, G Gärtner, M Schagerl) pp. 1–1130. (Springer Spektrum: Berlin, Germany)

Komárek J, Anagnostidis K (1999) Cyanoprokaryota. Part 1: Chroococcales. In ‘Süßwasserflora von Mitteleuropa. Vol. 19/1’. (Eds H Ettl, G Gärtner, H Heynig, D Mollenhauer) p. 1–548. (Gustav Fischer Verlag)

Komárek J, Anagnostidis K (2005) Cyanoprokaryota, Part 2: Oscillatoriales. In ‘Süßwasserflora von Mitteleuropa. Vol. 19/2’. (Eds B Büdel, L Krienitz, G Gärtner, M Schagerl) pp. 1–759. (Elsevier GmbH: München, Germany)

Kraus A, Spät P, Timm S, Wilson A, Schumann R, Hagemann M, Maček B, Hess WR (2024) Protein NirP1 regulates nitrite reductase and nitrite excretion in cyanobacteria. Nature Communications 15, 1911.
| Crossref | Google Scholar |

Krausfeldt LE, Farmer AT, Castro HF, Boyer GL, Campagna SR, Wilhelm SW (2020) Nitrogen flux into metabolites and microcystins changes in response to different nitrogen sources in Microcystis aeruginosa NIES-843. Environmental Microbiology 22(6), 2419-2431.
| Crossref | Google Scholar | PubMed |

Kuffner IB, Paul VJ (2001) Effects of Nitrate, Phosphate and Iron on the growth of macroalgae and benthic cyanobacteria from Cocos Lagoon, Guam. Marine Ecology Progress Series 222, 63-72.
| Crossref | Google Scholar |

Larned ST (2010) A prospectus for periphyton: recent and future ecological research. Journal of the North American Benthological Society 29(1), 182-206.
| Crossref | Google Scholar |

Liu L, Huang Q, Zhang Y, Qin B, Zhu G (2017) Excitation-emission matrix fluorescence and parallel factor analyses of the effects of N and P nutrients on the extracellular polymeric substances of Microcystis aeruginosa. Limnologica 63, 18-26.
| Crossref | Google Scholar |

Lutsenko ES, Moskvina MI (2014) Годовая динамика численности и биомассы цианобактерий эпилитона литорали Кольского залива (Баренцево море) [Annual numbers and biomass dynamics of epilithon cyanobacteria of Kola Bay (the Barents Sea) littoral]. Рыбное хозяйство [Fish Farming] 1, 53-58 (In Russian).
| Google Scholar |

MacLulich JH (1987) Variations in the density and variety of intertidal epilithic microflora. Marine Ecology Progress Series 40, 285-293.
| Crossref | Google Scholar |

Ministry of Agriculture of the Russian Federation (2016) Приказ от 13 декабря 2016 г. N 552 Об утверждении нормативов качества воды водных объектов рыбохозяйственного значения, в том числе нормативов предельно допустимых концентраций вредных веществ в водах водных объектов рыбохозяйственного значения. [Order Number 552. On approval of water quality standards of water bodies of fishery importance, including standards of maximum permissible concentrations of harmful substances in the waters of water bodies of fishery importance.] 13.01.2017 Number 45203; amended 22.08.2023. (Ministry of Justice of Russia) Available at http://publication.pravo.gov.ru/Document/View/0001201701160006

Miroshnichenko ES, Blaginina AA (2022) Количественная характеристика сообществ цианобактерий перифитона макропластика Карантинной бухты Черного моря [Quantitative characteristics of cyanobacterial communities in macroplastic periphyton in the Karantinnaya Bay of the Black Sea]. Вестник БГПУ [Bulletin of the BGPU] 63(2), 99-105 [In Russian].
| Google Scholar |

Mishra AK, Kaushik MS, Tiwari DN (2019) Nitrogenase and hydrogenase: enzymes for nitrogen fixation and hydrogen production in cyanobacteria. In ‘Cyanobacteria. From basic science to applications’. (Eds AK Mishra, DN Tiwari, AN Rai) pp. 173–191. (Elsevier Inc.) 10.1016/B978-0-12-814667-5.00008-8

Mishra S, Kumari N, Häder DP, Sinha RP (2022) Cyanobacterial blooms and their implications in the changing environment. Advances in Environmental and Engineering Research 3(1), 011.
| Crossref | Google Scholar |

Moreira-González AR, Brustolin MC, Mafra Junior LL (2020) Composition and abundance of benthic microalgae from the estuarine complex of Paranaguá Bay (southern Brazil) with special emphasis on toxic species. Ocean and Coastal Research 68, 20276.
| Crossref | Google Scholar |

Morin A, Lamoureux W, Busnarda J (1999) Empirical models predicting primary productivity from chlorophyll a and water temperature for stream periphyton and lake and ocean phytoplankton. Journal of the North American Benthological Society 18, 299-307.
| Crossref | Google Scholar |

Newcombe G (2012) ‘International guidance manual for the management of toxic cyanobacteria. Vol. 11.’ (IWA Publishing: UK) 10.2166/9781780401355

Newell SE, Davis TW, Johengen TH, Gossiaux D, Burtner A, Palladino D, McCarthy MJ (2019) Reduced forms of nitrogen are a driver of non-nitrogen-fixing harmful cyanobacterial blooms and toxicity in Lake Erie. Harmful Algae 81, 86-93.
| Crossref | Google Scholar | PubMed |

Özsoy E, Ünlüata Ü (1997) Oceanography of the Black Sea: a review of some recent results. Earth-Science Reviews 42(4), 231-272.
| Crossref | Google Scholar |

Padisák J, Chorus I, Welker M, Maršálek B, Kurmayer R (2021) Laboratory analyses of cyanobacteria and water chemistry. In ‘Toxic cyanobacteria in water’, 2nd edn. (Eds I Chorus, M Welker) pp. 689–743. (CRC Press; and World Health Organization: Boca Raton, FL, USA; and Geneva, Switzerland)

Paerl HW, Prufert LE, Ambrose WW (1991) Contemporaneous N2-fixation and oxygenic photosynthesis in the nonheterocystous mat-forming cyanobacterium Lyngbya aestuarii. Applied and Environmental Microbiology 57, 3086-3092.
| Crossref | Google Scholar | PubMed |

Powell ME, McCoy SJ (2024) Divide and conquer: spatial and temporal resource partitioning structures benthic cyanobacterial mats. Journal of Phycology 60, 254-272.
| Crossref | Google Scholar |

Quiblier C, Wood S, Echenique-Subiabre I, Heath M, Villeneuve A, Humbert J-F (2013) A review of current knowledge on toxic benthic freshwater cyanobacteria – Ecology, toxin production and risk management. Water Research 47(15), 5464-5479.
| Crossref | Google Scholar | PubMed |

Recknagel F, Park H-D, Sukenik A, Zohary T (2022) Dissolved organic nitrogen, dinoflagellates and cyanobacteria in two eutrophic lakes: analysis by inferential modelling. Harmful Algae 114, 102229.
| Crossref | Google Scholar |

Ribeiro FV, Caires TA, Simхes MAA, Hargreaves PI, Villela LB, Fistarol GO, Cazelgrandi Junior AB, Pereira- Filho GH, Moura RL, Pereira RC, Salomon PS (2022) Benthic cyanobacterial diversity and antagonistic interactions in Abrolhos Bank: allelopathy, susceptibility to herbivory, and toxicity. Frontiers in Marine Science 8, 790277.
| Crossref | Google Scholar |

Romeu MJ, Domínguez-Pérez D, Almeida D, Morais J, Araújo MJ, Osório H, Campos A, Vasconcelos V, Mergulhão FJ (2022) Hydrodynamic conditions affect the proteomic profile of marine biofilms formed by filamentous cyanobacterium. npj Biofilms and Microbiomes 8, 80.
| Crossref | Google Scholar |

Ryabushko LI (2013) ‘Микрофитобентос Черного моря.’ [‘Microphytobenthos of the Black Sea.’] (ЭКОСИ-Гидрофизика [ECOSI-Hydrophysics]: Sevastopol, Ukraine) [In Russian]

Ryabushko LI, Bondarenko AV (2017) The microphytobenthos of the Sea of Azov. Russian Journal of Marine Biology 43(4), 249-254.
| Crossref | Google Scholar |

Ryabushko LI, Pospelova NV, Balycheva DS, Kovrigina NP, Troshchenko OA, Kapranov SV (2017) Epizoon microalgae of the cultivated mollusk Мytilus galloprovincialis Lam. 1819, phytoplankton, hydrological and hydrochemical characteristics in the mussel-and-oyster farm area (Sevastopol, Black Sea). Marine Biological Journal 2(4), 67-83.
| Crossref | Google Scholar |

Ryabushko LI, Bondarenko AV, Miroshnichenko ES, Lishaev DN, Shiroyan AG (2020) Diatoms and cyanobacteria of periphyton of experimental synthetic polymer materials in Karantinnaya Bay in the Black Sea. Inland Water Biology 13(3), 399-407.
| Crossref | Google Scholar |

Ryabushko LI, Miroshnichenko E, Blaginina A, Shiroyan A, Lishaev D (2021) Diatom and cyanobacteria communities on artificial polymer substrates in the Crimean coastal waters of the Black Sea. Marine Pollution Bulletin 169, 112521.
| Crossref | Google Scholar |

Saxton MA, Arnold RJ, Bourbonniere RA, McKay RML, Wilhelm SW (2012) Plasticity of total and intracellular phosphorus quotas in Microcystis aeruginosa cultures and Lake Erie algal assemblages. Frontiers in Microbiology 3, 17684.
| Crossref | Google Scholar |

Schembri S, Zammit G (2022) The biodiversity of epilithic microalgal communities colonising a central Mediterranean coastline. Journal of Coastal Research 38(2), 249-260.
| Crossref | Google Scholar |

Schulte NO, Carlisle DM, Spaulding SA (2022) Natural and anthropogenic influences on benthic cyanobacteria in streams of the northeastern United States. The Science of The Total Environment 826, 154241.
| Crossref | Google Scholar |

Scott JT, Back JA, Taylor JM, King RS (2008) Does nutrient enrichment decouple algal–bacterial production in periphyton? Journal of the North American Benthological Society 27(2), 332-344.
| Crossref | Google Scholar |

Seckbach J, Oren A (2010) ‘Microbial mats. Modern and ancient microorganisms in stratified systems.’ (Springer: Dordrecht, Netherlands)

Shaika NA, Alhomaidi E, Sarker MM, An Nur A, Sadat MA, Awal S, Mostafa G, Hasan SJ, Mahmud Y, Khan S (2023) Winter bloom of marine cyanobacterium, Trichodesmium erythraeum and its relation to environmental factors. Sustainability 15, 1311.
| Crossref | Google Scholar |

Solovchenko A, Gorelova O, Karpova O, Selyakh I, Semenova L, Chivkunova O, Baulina O, Vinogradova E, Pugacheva T, Scherbakov P, Vasilieva S, Lukyanov A, Lobakova E (2020) Phosphorus feast and famine in cyanobacteria: is luxury uptake of the nutrient just a consequence of acclimation to its shortage? Cells 9, 1933.
| Crossref | Google Scholar |

Stal LJ (2012) Microbial mats and stromatolites. In ‘The ecology of cyanobacteria’. (Ed. BA Whitton) pp. 61–120. (Springer: Dordrecht, Netherlands) 10.1007/978-94-007-3855-3_4

Stal LJ, van Gemerden H, Krumbein WE (1985) Structure and development of a benthic marine microbial mat. FEMS Microbiology Ecology 31(2), 111-125.
| Crossref | Google Scholar |

Stal LJ, Bolhuis H, Cretoiu MS (2019) Phototrophic marine benthic microbiomes: the ecophysiology of these biological entities. Environmental Microbiology 21(5), 1529-1551.
| Crossref | Google Scholar | PubMed |

Stuij TM, Cleary DFR, Gomes NCM, Mehrotra R, Visser PM, Speksnijder AGCL, Hoeksema BW (2023) High diversity of benthic cyanobacterial mats on coral reefs of Koh Tao, Gulf of Thailand. Coral Reefs 42, 77-91.
| Crossref | Google Scholar |

Su Z, Olman V, Xu Y (2007) Computational prediction of Pho regulons in cyanobacteria. BMC Genomics 8, 156.
| Crossref | Google Scholar |

Taskin E, Öztürk M, Kurt O, Öztürk M (2008) ‘The check-list of the marine algae of Turkey.’ (Ecem Kirtasiye: Manisa, Turkey)

Tee HS, Waite D, Payne L, Middleditch M, Wood S, Handley KM (2020) Tools for successful proliferation: diverse strategies of nutrient acquisition by a benthic cyanobacterium. The ISME Journal 14, 2164-2178.
| Crossref | Google Scholar | PubMed |

Tokarev YN, Finenko ZZ, Shadrina NV (Eds) (2008) ‘Микроводоросли Черного моря: проблемы сохранения биоразнообразия ибиотехнологического использования.’ [‘The Black Sea microalgae: problems of biodiversity preservation and biotechnological usage.’] (ЭКОСИ-Гидрофизика [ECOSI-Hydrophysics]: Sevastopol, Ukraine) [In Russian]

Vinogradova O, Bryantseva Y (2017) ТАКСОНОМИЧЕСКАЯ РЕВИЗИЯ СYANOBACTERIA/CYANOPROKARYOTA ЧЕРНОМОРСКОГО ПОБЕРЕЖЬЯ УКРАИНЫ [Taxonomic revision of the species composition of Cyanobacteria/Cyanoprokaryota of the Ukrainian coast of the Black Sea]. Algologia 27(4), 436-47 [In Russian with title, abstract and keywords in Russian and English].
| Crossref | Google Scholar |

Wang Y, Cao T, Liu Q, Xuan B, Mu Z, Zhao J (2024) Stochastic processes driving cyanobacterial temporal succession in response to typhoons in a coastal reservoir. Water Research 267, 122480.
| Crossref | Google Scholar |

Waterbury JB (2006) The cyanobacteria – isolation, purification and identification. In ‘The prokaryotes’. (Eds M Dworkin, S Falkow, E Rosenberg, et al.) pp. 1053–1073. (Springer: New York, NY, USA) 10.1007/0-387-30744-3_38

Whitton BA, Potts M (2012) ‘Ecology of cyanobacteria II. Their diversity in space and time.’ (Springer) 10.1007/978-94-007-3855-3

Wilk-Woźniak E, Szarek-Gwiazda E, Walusiak E, Kosiba J, Krztoń W (2022) Non-nitrogen-fixers or nitrogen-fixers? Factors distinguishing the dominance of chroococcal and diazotrophic cyanobacterial species. International Journal of Environmental Research and Public Health 19, 15980.
| Crossref | Google Scholar |

Wu Y (2017) ‘Periphyton: functions and application in environmental remediation.’ (Elsevier)

Xia L, Zhu Y, Zhao Z (2020) Understanding the ecological response of planktic and benthic epipelic algae to environmental factors in an urban rivers system. Water 12, 1311.
| Crossref | Google Scholar |

Xu W, Zhang J, Yang C, Ai F, Yin Y, Guo H (2024) Differential impacts of organic and inorganic phosphorus on the growth and phosphorus utilization of Microcystis aeruginosa. Science of The Total Environment 951, 175392.
| Crossref | Google Scholar |

Zammit G (2019) Phototrophic biofilm communities and adaptation to growth on ancient archaeological surfaces. Annals of Microbiology 69, 1047-1058.
| Crossref | Google Scholar |

Zammit G, Schembri S, Fenech M (2021) Phototrophic biofilms and microbial mats from the marine littoral of the central Mediterranean. Acta Botanica Croatica 80(1), 112-116.
| Crossref | Google Scholar |

Zhang G, Liu Z, Zhang Z, Ding C, Sun J (2023) The impact of environmental factors on the phytoplankton communities in the Western Pacific Ocean: HPLC–CHEMTAX approach. Frontiers in Marine Science 10, 1185939.
| Crossref | Google Scholar |

Zhang J, Zhang F, Dong Z, Zhang W, Sun T, Chen L (2024) Response and acclimation of cyanobacteria to acidification: a comprehensive review. Science of The Total Environment 945, 173978.
| Crossref | Google Scholar |

Zhang Q, Jia L, Chen Y, Yan H, Chen Q, Zhang J, Sun H (2024) Molecular mechanisms of the cyanobacterial response to different phosphorus sources. Sustainability 16, 5642.
| Crossref | Google Scholar |

Zotov AB (2018) Unification of calculation the volume of alga for phytoplankton of the Black Sea to the standards of the EU Marine Strategy. Algologia 28(2), 208-232.
| Crossref | Google Scholar |

Zubia M, Vieira C, Palinska KA, Roué M, Gaertner J-C, Zloch I, Grellier M, Golubic S (2019) Benthic cyanobacteria on coral reefs of Moorea Island (French Polynesia): diversity response to habitat quality. Hydrobiologia 843(1), 61-78.
| Crossref | Google Scholar |