Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Relationship between mitochondrial DNA haplogroup and litter size in the pig

Dan Wang A B , Chao Ning A B , Jian-Feng Liu A and Xingbo Zhao https://orcid.org/0000-0001-5293-1024 A C
+ Author Affiliations
- Author Affiliations

A College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

B College of Animal Science and Technology, Shandong Agricultural University, Tai’an 271000, China.

C Corresponding author. Email: zhxb@cau.edu.cn

Reproduction, Fertility and Development 32(3) 267-273 https://doi.org/10.1071/RD19035
Submitted: 18 January 2019  Accepted: 18 June 2019   Published: 3 October 2019

Abstract

Mitochondrial DNA (mtDNA) has been widely associated with complex traits in farm animals. The present study evaluated the effects of mtDNA on litter size in pigs. Mitogenome sequencing of 1017 sows distinguished 232 variations, including 229 single nucleotide polymorphisms and three indels, which constituted 11 haplotypes and further clustered into two haplogroups that differed significantly (P < 0.05) in litter size. In order to explain the associations between the effect of haplogroup on litter size and different maternal origins, extant mitogenome sequences were used for phylogenetic or principal component analyses. The results of these analyses led to the identification of two groups, representing Chinese and European origins. The haplotypes corresponding to high litter size were all in the Chinese cluster, whereas haplotypes corresponding to low litter size were all in the European cluster. The results of this study suggest that the effect of haplogroup on litter size in the pig could be caused by diverse maternal origins, and that mtDNA haplogroup may be a marker for genetic selection for pig litter size.

Additional keywords: association analysis, haplotype, haplogroup, mitogenome.


References

Bandelt, H. J., Forster, P., and Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.
Median-joining networks for inferring intraspecific phylogenies.Crossref | GoogleScholarGoogle Scholar | 10331250PubMed |

Bell, B. R., Mcdaniel, B. T., and Robison, O. W. (1985). Effects of cytoplasmic inheritance on production traits of dairy-cattle. J. Dairy Sci. 68, 2038–2051.
Effects of cytoplasmic inheritance on production traits of dairy-cattle.Crossref | GoogleScholarGoogle Scholar | 4044967PubMed |

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300.

Chen, X., Wang, D., Xiang, H., Dun, W., Brahi, D. O. H., Yin, T., and Zhao, X. (2017). Mitochondrial DNA T7719G in tRNA-Lys gene affects litter size in small-tailed Han sheep. J. Anim. Sci. Biotechnol. 8, 31–36.
Mitochondrial DNA T7719G in tRNA-Lys gene affects litter size in small-tailed Han sheep.Crossref | GoogleScholarGoogle Scholar |

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772-772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 22847109PubMed |

Fang, M., and Andersson, L. (2006). Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proc. Biol. Sci. 273, 1803–1810.
Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication.Crossref | GoogleScholarGoogle Scholar | 16790414PubMed |

Fernández, A. I., Alves, E., Fernández, A., de Pedro, E., López-García, M. A., Ovilo, C., Rodríguez, M. C., and Silió, L. (2008). Mitochondrial genome polymorphisms associated with longissimus muscle composition in Iberian pigs. J. Anim. Sci. 86, 1283–1290.
Mitochondrial genome polymorphisms associated with longissimus muscle composition in Iberian pigs.Crossref | GoogleScholarGoogle Scholar | 18344306PubMed |

Giuffra, E., Kijas, J. M. H., Amarger, V., Carlborg, Ö., Jeon, J.-T., and Andersson, L. (2000). The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 1785–1791.
| 10747069PubMed |

Henry, B. A., Loughnan, R., Hickford, J., Young, I. R., St John, J. C., and Clarke, I. (2015). Differences in mitochondrial DNA inheritance and function align with body conformation in genetically lean and fat sheep. J. Anim. Sci. 93, 2083–2093.
Differences in mitochondrial DNA inheritance and function align with body conformation in genetically lean and fat sheep.Crossref | GoogleScholarGoogle Scholar | 26020304PubMed |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment sofware version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780.
MAFFT multiple sequence alignment sofware version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Kijas, J. M., and Andersson, L. (2001). A phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome. J. Mol. Evol. 52, 302–308.
A phylogenetic study of the origin of the domestic pig estimated from the near-complete mtDNA genome.Crossref | GoogleScholarGoogle Scholar | 11428467PubMed |

Kim, K. I., Lee, J. H., Li, K., Zhang, Y. P., Lee, S. S., Gongora, J., and Moran, C. (2002). Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33, 19–25.
Phylogenetic relationships of Asian and European pig breeds determined by mitochondrial DNA D-loop sequence polymorphism.Crossref | GoogleScholarGoogle Scholar | 11849133PubMed |

Larson, G., Liu, R., Zhao, X., Yuan, J., Fuller, D., Barton, L., Dobney, K., Fan, Q., Gu, Z., Liu, X. H., Luo, Y., Lv, P., Andersson, L., and Li, N. (2010). Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA. Proc. Natl Acad. Sci. USA 107, 7686–7691.
Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA.Crossref | GoogleScholarGoogle Scholar | 20404179PubMed |

Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 19346325PubMed |

Lu, W. W., Hou, L. L., Zhang, W. W., Zhang, P. F., Chen, W., Kang, X. T., and Huang, Y. Q. (2016). Study on heteroplasmic variation and the effect of chicken mitochondrial ND2. Mitochondrial DNA A. DNA Mapp. Seq. Anal. 27, 2303–2309.
| 25319280PubMed |

Mannen, H., Morimoto, M. L., Oyamat, K., Mukai, F., and Tsuji, S. (2003). Identification of mitochondrial DNA substitutions related to meat quality in Japanese Black cattle. J. Anim. Sci. 81, 68–73.
Identification of mitochondrial DNA substitutions related to meat quality in Japanese Black cattle.Crossref | GoogleScholarGoogle Scholar | 12597374PubMed |

Qin, Y. H., Chen, S. Y., and Lai, S. J. (2012). Polymorphisms of mitochondrial Atpase 8/6 genes and association with milk production traits in Holstein cows. Anim. Biotechnol. 23, 204–212.
Polymorphisms of mitochondrial Atpase 8/6 genes and association with milk production traits in Holstein cows.Crossref | GoogleScholarGoogle Scholar | 22870875PubMed |

R Core Team (2013). R: a language and environment for statistical computing. (R Foundation for Statistical Computing: Vienna, Austria.) Available at http://www.R-project.org/ [verified 15 Jul 2019].

Reicher, S., Seroussi, E., Weller, J. I., Rosov, A., and Gootwine, E. (2012). Ovine mitochondrial DNA sequence variation and its association with production and reproduction traits within an Afec-Assaf flock. J. Anim. Sci. 90, 2084–2091.
Ovine mitochondrial DNA sequence variation and its association with production and reproduction traits within an Afec-Assaf flock.Crossref | GoogleScholarGoogle Scholar | 22266988PubMed |

Rempel, L. A., Nonneman, D. J., Wise, T. H., Erkens, T., Peelman, L. J., and Rohrer, G. A. (2010). Association analyses of candidate single nucleotide polymorphisms on reproductive traits in swine. J. Anim. Sci. 88, 1–15.
Association analyses of candidate single nucleotide polymorphisms on reproductive traits in swine.Crossref | GoogleScholarGoogle Scholar | 19749016PubMed |

Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: effcient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542.
MrBayes 3.2: effcient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar | 22357727PubMed |

Rothschild, M., Jacobson, C., Vaske, D., Tuggle, C., Wang, L. Z., Short, T., Eckardt, G., Sasaki, S., Vincent, A., McLaren, D., Southwood, O., van der Steen, H., Mileham, A., and Plastow, G. (1996). The estrogen receptor locus is associated with a major gene influencing litter size in pigs. Proc. Natl Acad. Sci. USA 93, 201–205.
| 8552604PubMed |

Sambrook, J., and Russell, D. (2001). ‘Molecular Cloning: A Laboratory Manual.’ 3rd edn. (Cold Spring Harbor Laboratory Press: Cold Spring Harbor.)

Short, T. H., Rothschild, M. F., Southwood, O. I., McLaren, D. G., de Vries, A., van der Steen, H., Eckardt, G. R., Tuggle, C. K., Helm, J., Vaske, D. A., Mileham, A. J., and Plastow, G. S. (1997). Effect of the estrogen receptor locus on reproduction and production traits in four commercial pig lines. J. Anim. Sci. 75, 3138–3142.
Effect of the estrogen receptor locus on reproduction and production traits in four commercial pig lines.Crossref | GoogleScholarGoogle Scholar | 9419986PubMed |

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.
MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 24132122PubMed |

Tsai, T. S., Rajasekar, S., and St John, J. C. (2016). The relationship between mitochondrial DNA haplotype and the reproductive capacity of domestic pigs (Sus scrofa domesticus). BMC Genet. 17, 67-83.
The relationship between mitochondrial DNA haplotype and the reproductive capacity of domestic pigs (Sus scrofa domesticus).Crossref | GoogleScholarGoogle Scholar |

van Rens, B. T., and van der Lende, T. (2002). Litter size and piglet traits in gilts with different prolactin receptor genotypes. Theriogenology 57, 883–893.
Litter size and piglet traits in gilts with different prolactin receptor genotypes.Crossref | GoogleScholarGoogle Scholar | 11991391PubMed |

Villesen, P. (2007). FaBox: an online toolbox for fasta sequences. Mol. Ecol. Notes 7, 965–968.
FaBox: an online toolbox for fasta sequences.Crossref | GoogleScholarGoogle Scholar |

Wang, J., Xiang, H., Liu, L., Kong, M., Yin, T., and Zhao, X. (2017). Mitochondrial haplotypes influence metabolic traits across bovine inter- and intra-species cybrids. Sci. Rep. 7, 4179–4188.
Mitochondrial haplotypes influence metabolic traits across bovine inter- and intra-species cybrids.Crossref | GoogleScholarGoogle Scholar | 29273785PubMed |

Wang, D., Ning, C., Xiang, H., Zheng, X., Kong, M., Yin, T., Liu, J., and Zhao, X. (2018). Polymorphism of mitochondrial tRNA genes associated with the number of pigs born alive. J. Anim. Sci. Biotechnol. 9, 86–95.
Polymorphism of mitochondrial tRNA genes associated with the number of pigs born alive.Crossref | GoogleScholarGoogle Scholar |

Watanobe, T., Ishiguro, N., Okumura, N., Nakano, M., Matsui, A., Hongo, H., and Ushiro, H. (2001). Ancient mitochondrial DNA reveals the origin of Sus scrofa from Rebun Island, Japan. J. Mol. Evol. 52, 281–289.
Ancient mitochondrial DNA reveals the origin of Sus scrofa from Rebun Island, Japan.Crossref | GoogleScholarGoogle Scholar | 11428465PubMed |

Wickham, H. (2016). ‘ggplot2: Elegant Graphics for Data Analysis.’ (Springer-Verlag: New York.) Available at https://www.springer.com/gp/book/9780387981413 [verified 15 Jul 2019].

Xiang, H., Gao, J. Q., Cai, D. W., Luo, Y. B., Yu, B. Q., Liu, L. Q., Liu, R. R., Zhou, H., Chen, X. Y., Dun, W. T., Wang, X., Hofreiter, M., and Zhao, X. B. (2017). Origin and dispersal of early domestic pigs in northern China. Sci. Rep. 7, 5602–5610.
Origin and dispersal of early domestic pigs in northern China.Crossref | GoogleScholarGoogle Scholar | 28798357PubMed |

Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82.
GCTA: a tool for genome-wide complex trait analysis.Crossref | GoogleScholarGoogle Scholar | 21167468PubMed |

Yen, N. T., Lin, C. S., Ju, C. C., Wang, S. C., and Huang, M. C. (2007). Mitochondrial DNA polymorphism and determination of effects on reproductive trait in pigs. Reprod. Domest. Anim. 42, 387–392.
Mitochondrial DNA polymorphism and determination of effects on reproductive trait in pigs.Crossref | GoogleScholarGoogle Scholar | 17635776PubMed |

Yu, G., Xiang, H., Tian, J., Yin, J., Pinkert, C. A., Li, Q., and Zhao, X. (2015). Mitochondrial haplotypes influence metabolic traits in porcine transmitochondrial cybrids. Sci. Rep. 5, 13118–13127.
Mitochondrial haplotypes influence metabolic traits in porcine transmitochondrial cybrids.Crossref | GoogleScholarGoogle Scholar | 26621790PubMed |

Zhang, B., Chen, H., Hua, L. S., Zhang, C. L., Kang, X. T., Wang, X. Z., Pan, C. Y., Lan, X. Y., and Lei, C. Z. (2008). Novel SNPs of the mtDNA ND5 gene and their associations with several growth traits in the Nanyang cattle breed. Biochem. Genet. 46, 362–368.
Novel SNPs of the mtDNA ND5 gene and their associations with several growth traits in the Nanyang cattle breed.Crossref | GoogleScholarGoogle Scholar | 18231850PubMed |