Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Morphokinetics of early equine embryo development in vitro using time-lapse imaging, and use in selecting blastocysts for transfer

Niamh Lewis https://orcid.org/0000-0002-6976-2826 A G H , Karen Schnauffer B , Katrin Hinrichs https://orcid.org/0000-0002-8581-3814 C , Monica Morganti D , Stephen Troup E and Caroline Argo F
+ Author Affiliations
- Author Affiliations

A Institute of Ageing and Chronic Disease, University of Liverpool, Neston CH64 7TE, UK.

B Reproductive Health Group, Daresbury Park, Daresbury, Cheshire WA4 4GE, UK.

C College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.

D Twemlows Stud Farm, Whitchurch, Shropshire SY132EZ, UK.

E Reproductive Science Consultancy, 3A Kennerley’s Lane, Wilmslow, Cheshire SK9 5EQ, UK.

F North Faculty, Scotland’s Rural College, Craibstone Estate, Bucksburn, Aberdeen AB21 9YA, UK.

G Present address: Equine Fertility Solutions, Navan Road, Dublin 7, Ireland.

H Corresponding author. Email: n.lewis@liv.ac.uk

Reproduction, Fertility and Development 31(12) 1851-1861 https://doi.org/10.1071/RD19225
Submitted: 17 June 2019  Accepted: 17 September 2019   Published: 22 October 2019

Abstract

The use of time-lapse imaging (TLI) in the evaluation of morphokinetics associated with in vitro developmental competence is well described for human, cattle and pig embryos. It is generally accepted that embryos that complete early cleavage sooner are more likely to form blastocysts and that timing of later events, such as blastocyst formation and expansion, are predictive of implantation potential and euploid status. In the horse, morphokinetics as a predictor of developmental competence has received little attention. In this study we evaluated the morphokinetics of early equine embryo development in vitro for 144 oocytes after intracytoplasmic sperm injection and report the timings of blastocyst development associated with ongoing pregnancy for the first time. There was a tendency for time of cytoplasmic extrusion and first cleavage to occur earlier in the embryos that went on to form blastocysts (n = 19) compared with those that arrested, and for first cleavage to occur earlier in blastocysts that established pregnancies that were ongoing (n = 4) compared with pregnancies that were lost (n = 2). TLI was clinically useful in identifying blastocysts when evaluation of morphology on static imaging was equivocal.

Additional keywords: horse, intracytoplasmic sperm injection (ICSI), IVF, pregnancy, Primo Vision.


References

Armstrong, S., Arrol, N., Cree, L. M., Jordan, V., and Farquhar, C. (2015). Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst. Rev. 2, CD011320.

Athayde Wirka, K., Chen, A. A., Conaghan, J., Ivani, K., Gvakharia, M., Behr, B., Suraj, V., Tan, L., and Shen, S. (2014). Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development. Fertil. Steril. 101, 1637–1648.e5.
Atypical embryo phenotypes identified by time-lapse microscopy: high prevalence and association with embryo development.Crossref | GoogleScholarGoogle Scholar | 24726214PubMed |

Barrie, A., Homburg, R., McDowell, G., Brown, J., Kingsland, C., and Troup, S. (2017a). Examining the efficacy of six published time-lapse imaging embryo selection algorithms to predict implantation to demonstrate the need for the development of specific, in-house morphokinetic selection algorithms. Fertil. Steril. 107, 613–621.
Examining the efficacy of six published time-lapse imaging embryo selection algorithms to predict implantation to demonstrate the need for the development of specific, in-house morphokinetic selection algorithms.Crossref | GoogleScholarGoogle Scholar | 28069186PubMed |

Barrie, A., Homburg, R., McDowell, G., Brown, J., Kingsland, C., and Troup, S. (2017b). Preliminary investigation of the prevalence and implantation potential of abnormal embryonic phenotypes assessed using time-lapse imaging. Reprod. Biomed. Online 34, 455–462.
Preliminary investigation of the prevalence and implantation potential of abnormal embryonic phenotypes assessed using time-lapse imaging.Crossref | GoogleScholarGoogle Scholar | 28319017PubMed |

Barrie, A., Homburg, R., McDowell, G., Brown, J., Kingsland, C., and Troup, S. (2017c). Embryos cultured in a time-lapse system result in superior treatment outcomes: a strict matched pair analysis. Hum. Fertil. (Camb.) 20, 179–185.
Embryos cultured in a time-lapse system result in superior treatment outcomes: a strict matched pair analysis.Crossref | GoogleScholarGoogle Scholar | 27884061PubMed |

Bavister, B. D. (1988). Role of oviductal secretions in embryonic growth in vivo and in vitro. Theriogenology 29, 143–154.
Role of oviductal secretions in embryonic growth in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar |

Betteridge, K. J. (2007). Equine embryology: an inventory of unanswered questions. Theriogenology 68, S9–S21.
Equine embryology: an inventory of unanswered questions.Crossref | GoogleScholarGoogle Scholar | 17532037PubMed |

Betteridge, K. J., Eaglesome, M. D., Mitchell, D., Flood, P. F., and Beriault, R. (1982). Development of horse embryos up to twenty two days after ovulation: observations on fresh specimens. J. Anat. 135, 191–209.
| 7130052PubMed |

Bezard, J., Magistrini, M., Duchamp, G., and Palmer, E. (1989). Chronology of equine fertilisation and embryonic development in vivo and in vitro. Equine Vet. J. 21, 105–110.
Chronology of equine fertilisation and embryonic development in vivo and in vitro.Crossref | GoogleScholarGoogle Scholar |

Campbell, A., Fishel, S., Bowman, N., Duffy, S., Sedler, M., and Hickman, C. F. L. (2013). Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics. Reprod. Biomed. Online 26, 477–485.
Modelling a risk classification of aneuploidy in human embryos using non-invasive morphokinetics.Crossref | GoogleScholarGoogle Scholar | 23518033PubMed |

Choi, Y. H., Love, C. C., Love, L. B., Varner, D. D., Brinsko, S., and Hinrichs, K. (2002). Developmental competence in vivo and in vitro of in vitro-matured equine oocytes fertilized by intracytoplasmic sperm injection with fresh or frozen–thawed spermatozoa. Reproduction 123, 455–465.
Developmental competence in vivo and in vitro of in vitro-matured equine oocytes fertilized by intracytoplasmic sperm injection with fresh or frozen–thawed spermatozoa.Crossref | GoogleScholarGoogle Scholar | 11882023PubMed |

Choi, Y.-H., Love, C. C., Varner, D. D., Love, L. B., and Hinrichs, K. (2003). Effects of gas conditions, time of medium change, and ratio of medium to embryo on in vitro development of horse oocytes fertilized by intracytoplasmic sperm injection. Theriogenology 59, 1219–1229.
Effects of gas conditions, time of medium change, and ratio of medium to embryo on in vitro development of horse oocytes fertilized by intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 12527070PubMed |

Choi, Y. H., Love, L. B., Varner, D. D., and Hinrichs, K. (2004). Factors affecting developmental competence of equine oocytes after intracytoplasmic sperm injection. Reproduction 127, 187–194.
Factors affecting developmental competence of equine oocytes after intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 15056784PubMed |

Choi, Y. H., Love, C. C., Varner, D. D., and Hinrichs, K. (2006). Equine blastocyst development after intracytoplasmic injection of sperm subjected to two freeze–thaw cycles. Theriogenology 65, 808–819.
Equine blastocyst development after intracytoplasmic injection of sperm subjected to two freeze–thaw cycles.Crossref | GoogleScholarGoogle Scholar | 16095679PubMed |

Choi, Y. H., Harding, H. D., Hartman, D. L., Obermiller, A. D., Kurosaka, S., McLaughlin, K. J., and Hinrichs, K. (2009). The uterine environment modulates trophectodermal POU5F1 levels in equine blastocysts. Reproduction 138, 589–599.
The uterine environment modulates trophectodermal POU5F1 levels in equine blastocysts.Crossref | GoogleScholarGoogle Scholar | 19525365PubMed |

Choi, Y., Velez, I. C., Macías-García, B., Riera, F. L., Ballard, C. S., and Hinrichs, K. (2016). Effect of clinically-related factors on in vitro blastocyst development after equine ICSI. Theriogenology 85, 1289–1296.
Effect of clinically-related factors on in vitro blastocyst development after equine ICSI.Crossref | GoogleScholarGoogle Scholar | 26777560PubMed |

Ciray, H. N., Aksoy, T., Goktas, C., Ozturk, B., and Bahceci, M. (2012). Time-lapse evaluation of human embryo development in single versus sequential culture media-a sibling oocyte study. J. Assist. Reprod. Genet. 29, 891–900.
Time-lapse evaluation of human embryo development in single versus sequential culture media-a sibling oocyte study.Crossref | GoogleScholarGoogle Scholar | 22714134PubMed |

Claes, A., Cuervo-Arango, J., van den Broek, J., Galli, C., Colleoni, S., Lazzari, G., Deelen, C., Beitsma, M., and Stout, T. A. (2018). Factors affecting the likelihood of pregnancy and embryonic loss after transfer of cryopreserved in vitro produced equine embryos. Equine Vet. J. 51, 446–450.
Factors affecting the likelihood of pregnancy and embryonic loss after transfer of cryopreserved in vitro produced equine embryos.Crossref | GoogleScholarGoogle Scholar | 30269336PubMed |

Colleoni, S., Barbacini, S., Necchi, D., Duchi, R., Lazzari, G., and Galli, C. (2007). Application of ovum pick up, ICSI and embryo culture in equine practice. In ‘Proceedings of the Annual Convention of the American Association of Equine Practioners’, 1–5 December 2007, Orlando FL, USA. (Eds Corey, D.G. Reed, S.M. and Robinson, C.) pp. 554–559. (Published by American Association of Equine Practioners, Lexington, KY, USA.)

Cuervo-Arango, J., Aguilar, J., and Newcombe, J. R. (2009). Effect of type of semen, time of insemination relative to ovulation and embryo transfer on early equine embryonic vesicle growth as determined by ultrasound. Theriogenology 71, 1267–1275.
Effect of type of semen, time of insemination relative to ovulation and embryo transfer on early equine embryonic vesicle growth as determined by ultrasound.Crossref | GoogleScholarGoogle Scholar | 19246082PubMed |

Dandekar, P., and Talbot, P. (1992). Perivitelline space of mammalian oocytes: extracellular matrix of the unfertilized oocyte and formation of a cortical granule envelope following fertilisation. Mol. Reprod. Dev. 31, 135–143.
Perivitelline space of mammalian oocytes: extracellular matrix of the unfertilized oocyte and formation of a cortical granule envelope following fertilisation.Crossref | GoogleScholarGoogle Scholar | 1599682PubMed |

Desai, N., Goldberg, J. M., Austin, C., and Falcone, T. (2018). Are cleavage anomalies, multinucleation, or specific cell cycle kinetics observed with time-lapse imaging predictive of embryo developmental capacity or ploidy? Fertil. Steril. 109, 665–674.
Are cleavage anomalies, multinucleation, or specific cell cycle kinetics observed with time-lapse imaging predictive of embryo developmental capacity or ploidy?Crossref | GoogleScholarGoogle Scholar | 29452698PubMed |

Edwards, R. G., Fishel, S. B., Cohen, J., Fehilly, C. B., Purdy, J. M., Slater, J. M., Steptoe, P. C., and Webster, J. M. (1984). Factors influencing the success of in vitro fertilization for alleviating human infertility. J In Vitro Fert Embryo Transf. 1, 3–23.
Factors influencing the success of in vitro fertilization for alleviating human infertility.Crossref | GoogleScholarGoogle Scholar | 6242159PubMed |

Foss, R., Ortis, H., and Hinrichs, K. (2013). Effect of potential oocyte transport protocols on blastocyst rates after intracytoplasmic sperm injection in the horse. Equine Vet. J. 45, 39–43.
Effect of potential oocyte transport protocols on blastocyst rates after intracytoplasmic sperm injection in the horse.Crossref | GoogleScholarGoogle Scholar |

Fujimoto, V. Y., Browne, R. W., Bloom, M. S., Sakkas, D., and Alikani, M. (2011). Pathogenesis, developmental consequences, and clinical correlations of human embryo fragmentation. Fertil. Steril. 95, 1197–1204.
Pathogenesis, developmental consequences, and clinical correlations of human embryo fragmentation.Crossref | GoogleScholarGoogle Scholar | 21146166PubMed |

Grisart, B., Massip, A., and Dessy, F. (1994). Cinematographic analysis of bovine embryo development in serum-free oviduct-conditioned medium. J. Reprod. Fertil. 101, 257–264.
Cinematographic analysis of bovine embryo development in serum-free oviduct-conditioned medium.Crossref | GoogleScholarGoogle Scholar | 7932357PubMed |

Hinrichs, K., Choi, Y. H., Love, L. B., Varner, D. D., Love, C. C., and Walckenaer, B. E. (2005). Chromatin configuration within the germinal vesicle of horse oocytes: changes post mortem and relationship to meiotic and developmental competence. Biol. Reprod. 72, 1142–1150.
Chromatin configuration within the germinal vesicle of horse oocytes: changes post mortem and relationship to meiotic and developmental competence.Crossref | GoogleScholarGoogle Scholar | 15647456PubMed |

Hinrichs, K., Choi, Y. H., Love, C. C., and Spacek, S. (2014). Use of in vitro maturation of oocytes, intracytoplasmic sperm injection and in vitro culture to the blastocyst stage in a commercial equine assisted reproduction program. J. Equine Vet. Sci. 34, 176.
Use of in vitro maturation of oocytes, intracytoplasmic sperm injection and in vitro culture to the blastocyst stage in a commercial equine assisted reproduction program.Crossref | GoogleScholarGoogle Scholar |

Jacobson, C. C., Choi, Y.-H., Hayden, S. S., and Hinrichs, K. (2010). Recovery of mare oocytes on a fixed biweekly schedule, and resulting blastocyst formation after intracytoplasmic sperm injection. Theriogenology 73, 1116–1126.
Recovery of mare oocytes on a fixed biweekly schedule, and resulting blastocyst formation after intracytoplasmic sperm injection.Crossref | GoogleScholarGoogle Scholar | 20202674PubMed |

Kirkegaard, K., Kesmodel, U. S., Hindkjær, J. J., and Ingerslev, H. J. (2013a). Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohort study. Hum. Reprod. 28, 2643–2651.
Time-lapse parameters as predictors of blastocyst development and pregnancy outcome in embryos from good prognosis patients: a prospective cohort study.Crossref | GoogleScholarGoogle Scholar | 23900207PubMed |

Kirkegaard, K., Hindkjaer, J. J., and Ingerslev, H. J. (2013b). Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertil. Steril. 99, 738–744.e4.
Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring.Crossref | GoogleScholarGoogle Scholar | 23245683PubMed |

Kirkegaard, K., Sundvall, L., Erlandsen, M., Hindkjær, J. J., Knudsen, U. B., and Ingerslev, H. J. (2016). Timing of human preimplantation embryonic development is confounded by embryo origin. Hum. Reprod. 31, 324–331.
| 26637491PubMed |

Lewis, N. L., Hinrichs, K., Schnauffer, K., Morganti, M., and McG, A. C. (2016). Effect of oocyte source and transport time on rates of equine oocyte maturation and cleavage after fertilisation by ICSI, with a note on the validation of equine embryo morphological classification. Clin. Theriogenology 8, 25–39.

Magata, F., Ideta, A., Okubo, H., Matsuda, F., Urakawa, M., and Oono, Y. (2019). Growth potential of bovine embryos presenting abnormal cleavage observed through time lapse cinematography. Theriogenology 133, 119–124.
Growth potential of bovine embryos presenting abnormal cleavage observed through time lapse cinematography.Crossref | GoogleScholarGoogle Scholar | 31085381PubMed |

Marzano, G., Mastrorocco, A., Zianni, R., Mangiacotti, M., Chiaravalle, A. E., Lacalandra, G. M., Minervini, F., Cardinali, A., Macciocca, M., Vicenti, R., Fabbri, R., Hinrichs, K., Dell’Aquilla, M., and Martino, N. A. (2019). Altered morphokinetics in equine embryos from oocytes exposed to DEHP during IVM. Mol. Reprod. Dev. , .
Altered morphokinetics in equine embryos from oocytes exposed to DEHP during IVM.Crossref | GoogleScholarGoogle Scholar | 31410935PubMed |

Mateusen, B., Van Soom, A., Maes, D. G. D., Donnay, I., Duchateau, L., and Lequarre, A. S. (2005). Porcine embryo development and fragmentation and their relation to apoptopic markers: a cinematographic and confocal laser scanning microscopic study. Reproduction 129, 443–452.
Porcine embryo development and fragmentation and their relation to apoptopic markers: a cinematographic and confocal laser scanning microscopic study.Crossref | GoogleScholarGoogle Scholar | 15798019PubMed |

Meseguer, M., Herrero, J., Tejera, A., Hilligsøe, K. M., Ramsing, N. B., and Remoh, J. (2011). The use of morphokinetics as a predictor of embryo implantation. Hum. Reprod. 26, 2658–2671.
The use of morphokinetics as a predictor of embryo implantation.Crossref | GoogleScholarGoogle Scholar | 21828117PubMed |

Rubio, I., Kuhlmann, R., Agerholm, I., Kirk, J., Herrero, J., Escribá, M. J., Bellver, J., and Meseguer, M. (2012). Limited implantation success of direct-cleaved human zygotes: a time-lapse study. Fertil. Steril. 98, 1458–1463.
Limited implantation success of direct-cleaved human zygotes: a time-lapse study.Crossref | GoogleScholarGoogle Scholar | 22925687PubMed |

Salgado, R. M., Resende, H. L., Canesin, H. S., and Hinrichs, K. (2018). Lower blastocyst quality after conventional vs. Piezo ICSI in the horse reflects delayed sperm component remodeling and oocyte activation. J. Assist. Reprod. Genet. 35, 825–840.
Lower blastocyst quality after conventional vs. Piezo ICSI in the horse reflects delayed sperm component remodeling and oocyte activation.Crossref | GoogleScholarGoogle Scholar | 29637506PubMed |

Somfai, T., Inaba, Y., Aikawa, Y., Ohtake, M., Kobayashi, S., Konishi, K., and Imai, K. (2010). Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis. J. Reprod. Dev. 56, 200–207.
Relationship between the length of cell cycles, cleavage pattern and developmental competence in bovine embryos generated by in vitro fertilization or parthenogenesis.Crossref | GoogleScholarGoogle Scholar | 20035110PubMed |

Sugimura, S., Akai, T., Somfai, T., Hirayama, M., Aikawa, Y., Ohtake, M., Hattori, H., Kobayashi, S., Hashiyada, Y., Konishi, K., and Imai, K. (2010). Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos. Biol. Reprod. 83, 970–978.
Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos.Crossref | GoogleScholarGoogle Scholar | 20739661PubMed |

Sugimura, S., Akai, T., Hashiyada, Y., Somfai, T., Inaba, Y., Hirayama, M., Yamanouchi, T., Matsuda, H., Kobayashi, S., Aikawa, Y., Ohtake, M., Kobayashi, E., Konishi, K., and Imai, K. (2012). Promising system for selecting healthy in vitro-fertilized embryos in cattle. PLoS One 7, e36627.
| 22590579PubMed |

Van Montfoort, A. P. A., Dumoulin, J. C. M., Kester, A. D. M., and Evers, J. L. H. (2004). Early cleavage is a valuable addition to existing embryo selection parameters: a study using single embryo transfers. Hum. Reprod. 19, 2103–2108.
Early cleavage is a valuable addition to existing embryo selection parameters: a study using single embryo transfers.Crossref | GoogleScholarGoogle Scholar |

Van Soom, A., Van Vlaenderen, I., Mahmoudzadeh, A. R., Deluyker, H., and de Kruif, A. (1992). Compaction rate of in vitro fertilized bovine embryos related to the interval from insemination to first cleavage. Theriogenology 38, 905–919.
Compaction rate of in vitro fertilized bovine embryos related to the interval from insemination to first cleavage.Crossref | GoogleScholarGoogle Scholar | 16727189PubMed |

Webel, S. K., Franklin, V., Harland, B., and Dziuk, P. J. (1977). Fertility, ovulation and maturation of eggs in mares injected with HCG. J. Reprod. Fertil. 51, 337–341.
Fertility, ovulation and maturation of eggs in mares injected with HCG.Crossref | GoogleScholarGoogle Scholar | 563450PubMed |

Wong, C. C., Loewke, K. E., Bossert, N. L., Behr, B., DeJonge, C. J., Baer, T. M., and Pera, R. A. R. (2010). Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 28, 1115–1121.
Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage.Crossref | GoogleScholarGoogle Scholar | 20890283PubMed |