Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Extracellular vesicles in the male reproductive tract of the softshell turtle

Qiusheng Chen A C and William V. Holt https://orcid.org/0000-0002-9039-8651 B
+ Author Affiliations
- Author Affiliations

A MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.

B Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.

C Corresponding author. Email: chenqsh305@njau.edu.cn

Reproduction, Fertility and Development 33(9) 519-529 https://doi.org/10.1071/RD20214
Submitted: 19 August 2020  Accepted: 28 January 2021   Published: 15 March 2021

Abstract

Extracellular vesicles (EVs) are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles that originate from the endosomal system or are shed from the plasma membrane respectively. As mediators of cell communication, EVs are present in biological fluids and are involved in many physiological and pathological processes. The role of EVs has been extensively investigated in the mammalian male reproductive tract, but the characteristics and identification of EVs in reptiles are still largely unknown. In this review we focus our attention on EVs and their distribution in the male reproductive tract of the Chinese softshell turtle Pelodiscus sinensis, mainly discussing the potential roles of EVs in intercellular communication during different phases of the reproductive process. In softshell turtles, Sertoli–germ cell communication via multivesicular bodies can serve as a source of EVs during spermatogenesis, and these EVs interact with epithelia of the ductuli efferentes and the principal cells of the epididymal epithelium. These EVs are involved in sperm maturation, transport and storage. EVs are also shed by telocytes, which contact and exchange information with other, as well as distant interstitial cells. Overall, EVs play an indispensable role in the normal reproductive function of P. sinensis and can be used as an excellent biomarker for understanding male fertility.

Graphical Abstract Image

Keywords: Chinese softshell turtle, extracellular vesicles (EVs), male reproductive tract, Pelodiscus sinensis.


References

Ahmed, N., Yufei, H., Yang, P., Muhammad Yasir, W., Zhang, Q., Liu, T., Hong, C., Lisi, H., Xiaoya, C., and Chen, Q. (2016). Cytological study on Sertoli cells and their interactions with germ cells during annual reproductive cycle in turtle. Ecol. Evol. 6, 4050–4064.
Cytological study on Sertoli cells and their interactions with germ cells during annual reproductive cycle in turtle.Crossref | GoogleScholarGoogle Scholar | 27516863PubMed |

Almeida-Santos, S. M., and Salomão, M. (1997). Long-term sperm storage in the female Neotropical Rattlesnake Crotalus durissus terrificus (Viperidae: Crotalinae). Japanese Journal of Herpetology 17, 46–52.
Long-term sperm storage in the female Neotropical Rattlesnake Crotalus durissus terrificus (Viperidae: Crotalinae).Crossref | GoogleScholarGoogle Scholar |

Almiñana, C., and Bauersachs, S. (2020). Extracellular vesicles: Multi-signal messengers in the gametes/embryo-oviduct cross-talk. Theriogenology 150, 59–69.
Extracellular vesicles: Multi-signal messengers in the gametes/embryo-oviduct cross-talk.Crossref | GoogleScholarGoogle Scholar | 32088033PubMed |

Altei, W. F., Pachane, B. C., dos Santos, P. K., Ribeiro, L. N. M., Sung, B. H., Weaver, A. M., and Selistre-de-Araújo, H. S. (2020). Inhibition of αvβ3 integrin impairs adhesion and uptake of tumor-derived small extracellular vesicles. Cell Commun. Signal. 18, 158.
Inhibition of αvβ3 integrin impairs adhesion and uptake of tumor-derived small extracellular vesicles.Crossref | GoogleScholarGoogle Scholar | 32988382PubMed |

Alvarez-Rodriguez, M., Ljunggren, S. A., Karlsson, H., and Rodriguez-Martinez, H. (2019). Exosomes in specific fractions of the boar ejaculate contain CD44: A marker for epididymosomes? Theriogenology 140, 143–152.
Exosomes in specific fractions of the boar ejaculate contain CD44: A marker for epididymosomes?Crossref | GoogleScholarGoogle Scholar | 31473497PubMed |

Belleannée, C., Calvo, É., Caballero, J., and Sullivan, R. (2013). Epididymosomes convey different repertoires of microRNAs throughout the bovine epididymis. Biol. Reprod. 89, 30.
Epididymosomes convey different repertoires of microRNAs throughout the bovine epididymis.Crossref | GoogleScholarGoogle Scholar | 23803555PubMed |

Bian, X., Gandahi, J. A., Liu, Y., Yang, P., Liu, Y., Zhang, L., Zhang, Q., and Chen, Q. (2013a). The ultrastructural characteristics of the spermatozoa stored in the cauda epididymidis in Chinese soft-shelled turtle Pelodiscus sinensis during the breeding season. Micron 44, 202–209.
The ultrastructural characteristics of the spermatozoa stored in the cauda epididymidis in Chinese soft-shelled turtle Pelodiscus sinensis during the breeding season.Crossref | GoogleScholarGoogle Scholar | 22858349PubMed |

Bian, X., Zhang, L., Yang, L., Yang, P., Ullah, S., Zhang, Q., and Chen, Q. (2013b). Ultrastructure of epididymal epithelium and its interaction with the sperm in the soft-shelled turtle Pelodiscus sinensis. Micron 54–55, 65–74.
Ultrastructure of epididymal epithelium and its interaction with the sperm in the soft-shelled turtle Pelodiscus sinensis.Crossref | GoogleScholarGoogle Scholar | 24041582PubMed |

Bronson, F. H. (1985). Mammalian reproduction: an ecological perspective. Biol. Reprod. 32, 1–26.
Mammalian reproduction: an ecological perspective.Crossref | GoogleScholarGoogle Scholar | 3882162PubMed |

Bronson, F. H. (2009). Climate change and seasonal reproduction in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 3331–3340.
Climate change and seasonal reproduction in mammals.Crossref | GoogleScholarGoogle Scholar | 19833645PubMed |

Chen, Y., Zhou, Y., Wang, X. T., Qian, W. P., and Han, X. D. (2013). Microcystin-LR induces autophagy and apoptosis in rat Sertoli cells in vitro. Toxicon 76, 84–93.
Microcystin-LR induces autophagy and apoptosis in rat Sertoli cells in vitro.Crossref | GoogleScholarGoogle Scholar | 24047964PubMed |

Chen, H., Yang, P., Chu, X., Huang, Y., Liu, T., Zhang, Q., Li, Q., Hu, L., Waqas, Y., Ahmed, N., and Chen, Q. (2016). Cellular evidence for nano-scale exosome secretion and interactions with spermatozoa in the epididymis of the Chinese soft-shelled turtle, Pelodiscus sinensis. Oncotarget 7, 19242–19250.
Cellular evidence for nano-scale exosome secretion and interactions with spermatozoa in the epididymis of the Chinese soft-shelled turtle, Pelodiscus sinensis.Crossref | GoogleScholarGoogle Scholar | 26992236PubMed |

Chen, H., Huang, Y., Liu, T., Haseeb, A., Ahmed, N., Zhang, L., Bian, X., and Chen, Q. (2020a). Characteristics of seasonal spermatogenesis in the soft-shelled turtle. Anim. Reprod. Sci. 214, 106307.
Characteristics of seasonal spermatogenesis in the soft-shelled turtle.Crossref | GoogleScholarGoogle Scholar | 32087920PubMed |

Chen, H., Huang, Y., Yang, P., Shi, Y., Ahmed, N., Liu, T., Bai, X., Haseeb, A., and Chen, Q. (2020b). Autophagy enhances lipid droplet development during spermiogenesis in Chinese soft-shelled turtle, Pelodiscus sinensis. Theriogenology 147, 154–165.
Autophagy enhances lipid droplet development during spermiogenesis in Chinese soft-shelled turtle, Pelodiscus sinensis.Crossref | GoogleScholarGoogle Scholar | 31787469PubMed |

Chen, H., Liu, T., Holt, W. V., Yang, P., Zhang, L., Zhang, L., Han, X., Bian, X., and Chen, Q. (2020c). Advances in understanding mechanisms of long-term sperm storage-the soft-shelled turtle model. Histol. Histopathol. 35, 1–23.
| 31290136PubMed |

Cheng, C. Y., and Mruk, D. D. (2002). Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development. Physiol. Rev. 82, 825–874.
Cell junction dynamics in the testis: Sertoli-germ cell interactions and male contraceptive development.Crossref | GoogleScholarGoogle Scholar | 12270945PubMed |

Cheng, C. Y., and Mruk, D. D. (2010). The biology of spermatogenesis: the past, present and future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 1459–1463.
The biology of spermatogenesis: the past, present and future.Crossref | GoogleScholarGoogle Scholar | 20403863PubMed |

Cocucci, E., Racchetti, G., and Meldolesi, J. (2009). Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43–51.
Shedding microvesicles: artefacts no more.Crossref | GoogleScholarGoogle Scholar | 19144520PubMed |

Cooke, H. J., and Saunders, P. T. (2002). Mouse models of male infertility. Nat. Rev. Genet. 3, 790–801.
Mouse models of male infertility.Crossref | GoogleScholarGoogle Scholar | 12360237PubMed |

Cornwall, G. A. (2009). New insights into epididymal biology and function. Hum. Reprod. Update 15, 213–227.
New insights into epididymal biology and function.Crossref | GoogleScholarGoogle Scholar | 19136456PubMed |

Courty, Y. (1991). Testosterone and corticosterone co-regulate messenger RNA coding for secretory proteins in the epididymis of the lizard (Lacerta vivipara). J. Reprod. Fertil. 91, 292–300.
Testosterone and corticosterone co-regulate messenger RNA coding for secretory proteins in the epididymis of the lizard (Lacerta vivipara).Crossref | GoogleScholarGoogle Scholar | 1825336PubMed |

Courty, Y., Morel, F., and Dufaure, J. P. (1987). Characterization and androgenic regulation of major mRNAs coding for epididymal proteins in a lizard (Lacerta vivipara). J. Reprod. Fertil. 81, 443–451.
Characterization and androgenic regulation of major mRNAs coding for epididymal proteins in a lizard (Lacerta vivipara).Crossref | GoogleScholarGoogle Scholar | 3430464PubMed |

Cretoiu, S. M., and Popescu, L. M. (2014). Telocytes revisited. Biomol. Concepts 5, 353–369.
Telocytes revisited.Crossref | GoogleScholarGoogle Scholar | 25367617PubMed |

Cretoiu, D., Xu, J., Xiao, J., and Cretoiu, S. M. (2016). Telocytes and Their Extracellular Vesicles-Evidence and Hypotheses. Int. J. Mol. Sci. 17, 1322.
Telocytes and Their Extracellular Vesicles-Evidence and Hypotheses.Crossref | GoogleScholarGoogle Scholar |

Criscitiello, M. F., Kraev, I., Petersen, L. H., and Lange, S. (2020). Deimination Protein Profiles in Alligator mississippiensis Reveal Plasma and Extracellular Vesicle-Specific Signatures Relating to Immunity, Metabolic Function, and Gene Regulation. Front. Immunol. 11, 651.
| 32411128PubMed |

da Silveira, J. C., de Ávila, A., Garrett, H. L., Bruemmer, J. E., Winger, Q. A., and Bouma, G. J. (2018). Cell-secreted vesicles containing microRNAs as regulators of gamete maturation. J. Endocrinol. 236, R15–R27.
Cell-secreted vesicles containing microRNAs as regulators of gamete maturation.Crossref | GoogleScholarGoogle Scholar | 28870888PubMed |

Dufaure, J.-P., Mak, P., and Callard, I. P. (1983). Estradiol binding activity in epididymal cytosol of the turtle, Chrysemys picta. Gen. Comp. Endocrinol. 51, 61–65.
Estradiol binding activity in epididymal cytosol of the turtle, Chrysemys picta.Crossref | GoogleScholarGoogle Scholar | 6884762PubMed |

Duijvesz, D., Versluis, C. Y. L., van der Fels, C. A. M., Vredenbregt-van den Berg, M. S., Leivo, J., Peltola, M. T., Bangma, C. H., Pettersson, K. S. I., and Jenster, G. (2015). Immuno-based detection of extracellular vesicles in urine as diagnostic marker for prostate cancer. Int. J. Cancer 137, 2869–2878.
Immuno-based detection of extracellular vesicles in urine as diagnostic marker for prostate cancer.Crossref | GoogleScholarGoogle Scholar | 26139298PubMed |

Escola, J. M., Kleijmeer, M. J., Stoorvogel, W., Griffith, J. M., Yoshie, O., and Geuze, H. J. (1998). Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273, 20121–20127.
Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes.Crossref | GoogleScholarGoogle Scholar | 9685355PubMed |

Fader, C. M., and Colombo, M. I. (2009). Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ. 16, 70–78.
Autophagy and multivesicular bodies: two closely related partners.Crossref | GoogleScholarGoogle Scholar | 19008921PubMed |

Gist, D. H., Dawes, S. M., Turner, T. W., Sheldon, S., and Congdon, J. D. (2002). Sperm storage in turtles: A male perspective. J. Exp. Zool. 292, 180–186.
Sperm storage in turtles: A male perspective.Crossref | GoogleScholarGoogle Scholar | 11754033PubMed |

Gist, D. H., Bagwill, A., Lance, V., Sever, D. M., and Elsey, R. M. (2008). Sperm storage in the oviduct of the American alligator. J. Exp. Zool. A. Ecol. Genet. Physiol. 309A, 581–587.
Sperm storage in the oviduct of the American alligator.Crossref | GoogleScholarGoogle Scholar |

Gould, S. J., and Raposo, G. (2013). As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2, 20389.
As we wait: coping with an imperfect nomenclature for extracellular vesicles.Crossref | GoogleScholarGoogle Scholar |

György, B., Szabo, T. G., Pasztoi, M., Pal, Z., Misjak, P., Aradi, B., Laszlo, V., Pallinger, E., Pap, E., Kittel, A., Nagy, G., Falus, A., and Buzas, E. I. (2011). Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell. Mol. Life Sci. 68, 2667–2688.
Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles.Crossref | GoogleScholarGoogle Scholar | 21560073PubMed |

Hansen, L. A., Clulow, J., and Jones, R. C. (1999). The Role of Na+−H+ Exchange in Fluid and Solute Transport in the Rat Efferent Ducts. Exp. Physiol. 84, 521–527.
| 10362850PubMed |

Hess, R. A. (2018). Efferent Ductules: Structure and Function. In ‘Encyclopedia of Reproduction (Second Edition).’ (Ed. MK Skinner) pp. 270–278. (Academic Press: Oxford)

Hess, R. A., and França, L. R. (2005). Chapter 3 – Structure of the Sertoli Cell. In ‘Sertoli Cell Biology.’ (Eds MK Skinner and MD Griswold) pp. 19–40. (Academic Press: San Diego)

Kumar, M., and Tanwar, P. (2017). Organ Culture and Whole Mount Immunofluorescence Staining of Mouse Wolffian Ducts. J. Vis. Exp. , e55134.
| 28117794PubMed |

Lee, N. P. Y., Mruk, D. D., Wong, C.-h., and Cheng, C. Y. (2005). Regulation of Sertoli-Germ Cell Adherens Junction Dynamics in the Testis Via the Nitric Oxide Synthase (NOS)/cGMP/Protein Kinase G (PRKG)/β-Catenin (CATNB) Signaling Pathway: An In Vitro and In Vivo Study1. Biol. Reprod. 73, 458–471.
Regulation of Sertoli-Germ Cell Adherens Junction Dynamics in the Testis Via the Nitric Oxide Synthase (NOS)/cGMP/Protein Kinase G (PRKG)/β-Catenin (CATNB) Signaling Pathway: An In Vitro and In Vivo Study1.Crossref | GoogleScholarGoogle Scholar |

Lin, Y., Liang, A., He, Y., Li, Z., Li, Z., Wang, G., and Sun, F. (2019). Proteomic analysis of seminal extracellular vesicle proteins involved in asthenozoospermia by iTRAQ. Mol. Reprod. Dev. 86, 1094–1105.
Proteomic analysis of seminal extracellular vesicle proteins involved in asthenozoospermia by iTRAQ.Crossref | GoogleScholarGoogle Scholar | 31215738PubMed |

Lötvall, J., Hill, A. F., Hochberg, F., Buzás, E. I., Di Vizio, D., Gardiner, C., Gho, Y. S., Kurochkin, I. V., Mathivanan, S., Quesenberry, P., Sahoo, S., Tahara, H., Wauben, M. H., Witwer, K. W., and Théry, C. (2014). Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913.
Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles.Crossref | GoogleScholarGoogle Scholar | 25536934PubMed |

Ma, Y., Yang, H.-Z., Xu, L.-M., Huang, Y.-R., Dai, H.-L., and Kang, X.-N. (2015). Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells. Sci. Rep. 5, 8894.
Testosterone regulates the autophagic clearance of androgen binding protein in rat Sertoli cells.Crossref | GoogleScholarGoogle Scholar | 25745956PubMed |

Machtinger, R., Laurent, L. C., and Baccarelli, A. A. (2016). Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum. Reprod. Update 22, 182–193.
Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation.Crossref | GoogleScholarGoogle Scholar | 26663221PubMed |

Mencher, A., Morales, P., Valero, E., Tronchoni, J., Patil, K. R., and Gonzalez, R. (2020). Proteomic characterization of extracellular vesicles produced by several wine yeast species. Microb. Biotechnol. 13, 1581–1596.
Proteomic characterization of extracellular vesicles produced by several wine yeast species.Crossref | GoogleScholarGoogle Scholar | 32578397PubMed |

Morgan, C. P., Chan, J. C., and Bale, T. L. (2019). Driving the Next Generation: Paternal Lifetime Experiences Transmitted via Extracellular Vesicles and Their Small RNA Cargo. Biol. Psychiatry 85, 164–171.
Driving the Next Generation: Paternal Lifetime Experiences Transmitted via Extracellular Vesicles and Their Small RNA Cargo.Crossref | GoogleScholarGoogle Scholar | 30580777PubMed |

Nixon, B., De Iuliis, G. N., Hart, H. M., Zhou, W., Mathe, A., Bernstein, I. R., Anderson, A. L., Stanger, S. J., Skerrett-Byrne, D. A., Jamaluddin, M. F. B., Almazi, J. G., Bromfield, E. G., Larsen, M. R., and Dun, M. D. (2019). Proteomic Profiling of Mouse Epididymosomes Reveals their Contributions to Post-testicular Sperm Maturation. Mol. Cell. Proteomics 18, S91–S108.
Proteomic Profiling of Mouse Epididymosomes Reveals their Contributions to Post-testicular Sperm Maturation.Crossref | GoogleScholarGoogle Scholar | 30213844PubMed |

Olajide, J. S., and Cai, J. (2020). Perils and Promises of Pathogenic Protozoan Extracellular Vesicles. Front. Cell. Infect. Microbiol. 10, 371.
| 32923407PubMed |

Ozturk, N., Steger, K., and Schagdarsurengin, U. (2017). The impact of autophagy in spermiogenesis. Asian J. Androl. 19, 617–618.
The impact of autophagy in spermiogenesis.Crossref | GoogleScholarGoogle Scholar | 27905325PubMed |

Pleuger, C., Lehti, M. S., Dunleavy, J. E., Fietz, D., and O’Bryan, M. K. (2020). Haploid male germ cells—the Grand Central Station of protein transport. Hum. Reprod. Update 26, 474–500.
Haploid male germ cells—the Grand Central Station of protein transport.Crossref | GoogleScholarGoogle Scholar | 32318721PubMed |

Raposo, G., and Stoorvogel, W. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383.
Extracellular vesicles: exosomes, microvesicles, and friends.Crossref | GoogleScholarGoogle Scholar | 23420871PubMed |

Rheubert, J. L., McHugh, H. H., Collier, M. H., Sever, D. M., and Gribbins, K. M. (2009). Temporal germ cell development strategy during spermatogenesis within the testis of the Ground Skink, Scincella lateralis (Sauria: Scincidae). Theriogenology 72, 54–61.
Temporal germ cell development strategy during spermatogenesis within the testis of the Ground Skink, Scincella lateralis (Sauria: Scincidae).Crossref | GoogleScholarGoogle Scholar | 19344944PubMed |

Rheubert, J., Pasternak, M. A., Ely, M., Siegel, D. S., Trauth, S. E., Gribbins, K. M., and Sever, D. M. (2020). Seasonal histology and ultrastructure of the urogenital system in two sympatric lizards. J. Zool. 310, 273–286.

Ritzén, E. M., and French, F. S. (1974). Demonstraion of an adrogen binding protein (ABP) in rabbit testis: Secretion in efferent duct fluid and passage into epididymis. J. Steroid Biochem. 5, 151–154.
Demonstraion of an adrogen binding protein (ABP) in rabbit testis: Secretion in efferent duct fluid and passage into epididymis.Crossref | GoogleScholarGoogle Scholar | 4366457PubMed |

Rowlison, T., Cleland, T. P., Ottinger, M. A., and Comizzoli, P. (2020). Novel proteomic profiling of epididymal extracellular vesicles in the domestic cat reveals proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals. Mol. Cell. Proteomics 19, 2090–2104.
Novel proteomic profiling of epididymal extracellular vesicles in the domestic cat reveals proteins related to sequential sperm maturation with differences observed between normospermic and teratospermic individuals.Crossref | GoogleScholarGoogle Scholar | 33008835PubMed |

Saleem, S. N., and Abdel-Mageed, A. B. (2015). Tumor-derived exosomes in oncogenic reprogramming and cancer progression. Cell. Mol. Life Sci. 72, 1–10.
Tumor-derived exosomes in oncogenic reprogramming and cancer progression.Crossref | GoogleScholarGoogle Scholar | 25156068PubMed |

Schradin, C., Kinahan, A. A., and Pillay, N. (2009). Cooperative Breeding in Groups of Synchronously Mating Females and Evolution of Large Testes to Avoid Sperm Depletion in African Striped Mice1. Biol. Reprod. 81, 111–117.
Cooperative Breeding in Groups of Synchronously Mating Females and Evolution of Large Testes to Avoid Sperm Depletion in African Striped Mice1.Crossref | GoogleScholarGoogle Scholar | 19264699PubMed |

Seco-Rovira, V., Beltrán-Frutos, E., Ferrer, C., Saez, F. J., Madrid, J. F., Canteras, M., and Pastor, L. M. (2015). Testicular histomorphometry and the proliferative and apoptotic activities of the seminiferous epithelium in Syrian hamster (Mesocricetus auratus) during regression owing to short photoperiod. Andrology 3, 598–610.
Testicular histomorphometry and the proliferative and apoptotic activities of the seminiferous epithelium in Syrian hamster (Mesocricetus auratus) during regression owing to short photoperiod.Crossref | GoogleScholarGoogle Scholar | 25914318PubMed |

Sever, D. M., and Freeborn, L. R. (2012). Observations on the anterior testicular ducts in snakes with emphasis on sea snakes and ultrastructure in the yellow-bellied sea snake, Pelamis platurus. J. Morphol. 273, 324–336.
Observations on the anterior testicular ducts in snakes with emphasis on sea snakes and ultrastructure in the yellow-bellied sea snake, Pelamis platurus.Crossref | GoogleScholarGoogle Scholar | 22025381PubMed |

Sharma, U. (2019). Paternal Contributions to Offspring Health: Role of Sperm Small RNAs in Intergenerational Transmission of Epigenetic Information. Front. Cell Dev. Biol. 7, 215, 1-15.
Paternal Contributions to Offspring Health: Role of Sperm Small RNAs in Intergenerational Transmission of Epigenetic Information.Crossref | GoogleScholarGoogle Scholar | 31681757PubMed |

Sharma, U., Sun, F., Conine, C. C., Reichholf, B., Kukreja, S., Herzog, V. A., Ameres, S. L., and Rando, O. J. (2018). Small RNAs Are Trafficked from the Epididymis to Developing Mammalian Sperm. Dev. Cell 46, 481–494.e6.
Small RNAs Are Trafficked from the Epididymis to Developing Mammalian Sperm.Crossref | GoogleScholarGoogle Scholar | 30057273PubMed |

Shifrin, D. A., Demory Beckler, M., Coffey, R. J., and Tyska, M. J. (2013). Extracellular vesicles: communication, coercion, and conditioning. Mol. Biol. Cell 24, 1253–1259.
Extracellular vesicles: communication, coercion, and conditioning.Crossref | GoogleScholarGoogle Scholar | 23630232PubMed |

Shinomiya, A., Shimmura, T., Nishiwaki-Ohkawa, T., and Yoshimura, T. (2014). Regulation of Seasonal Reproduction by Hypothalamic Activation of Thyroid Hormone. Front. Endocrinol. 5, 12, 1-7.
Regulation of Seasonal Reproduction by Hypothalamic Activation of Thyroid Hormone.Crossref | GoogleScholarGoogle Scholar |

Simon, C., Greening, D. W., Bolumar, D., Balaguer, N., Salamonsen, L. A., and Vilella, F. (2018). Extracellular Vesicles in Human Reproduction in Health and Disease. Endocr. Rev. 39, 292–332.
Extracellular Vesicles in Human Reproduction in Health and Disease.Crossref | GoogleScholarGoogle Scholar | 29390102PubMed |

Simons, M., and Raposo, G. (2009). Exosomes–vesicular carriers for intercellular communication. Curr. Opin. Cell Biol. 21, 575–581.
Exosomes–vesicular carriers for intercellular communication.Crossref | GoogleScholarGoogle Scholar | 19442504PubMed |

Somfai-Relle, S., Schauss, A. G., Financsek, I., Glavits, R., Varga, T., and Szücs, Z. (2005). Acute and subchronic toxicity studies of cryogenically-frozen, cryomilled, Pelodiscus sinensis (Japanese soft-shelled turtle–suppon) powder administered to the rat. Food Chem. Toxicol. 43, 575–580.
Acute and subchronic toxicity studies of cryogenically-frozen, cryomilled, Pelodiscus sinensis (Japanese soft-shelled turtle–suppon) powder administered to the rat.Crossref | GoogleScholarGoogle Scholar | 15721205PubMed |

Sullivan, R., D’Amours, O., Caballero, J., and Belleannée, C. (2015). The sperm journey in the excurrent duct: Functions of microvesicles on sperm maturation and gene expression along the epididymis. Anim. Reprod. 12, 88–92.

Tamessar, C. T., Trigg, N. A., Nixon, B., Skerrett-Byrne, D. A., Sharkey, D. J., Robertson, S. A., Bromfield, E. G., and Schjenken, J. E. (2020). Roles of male reproductive tract extracellular vesicles in reproduction. Am. J. Reprod. Immunol. 85, e13338.
Roles of male reproductive tract extracellular vesicles in reproduction.Crossref | GoogleScholarGoogle Scholar | 32885533PubMed |

Tarique, I., Liu, Y., Bai, X., Haseeb, A., Yang, P., Huang, Y., Qu, W., Wu, R., Vistro, W. A., and Chen, Q. (2019a). Characterization of Extracellular Vesicles from Cilia and Epithelial Cells of Ductuli Efferentes in a Turtle (Pelodiscus sinensis). Animals (Basel) 9, 888.
Characterization of Extracellular Vesicles from Cilia and Epithelial Cells of Ductuli Efferentes in a Turtle (Pelodiscus sinensis).Crossref | GoogleScholarGoogle Scholar |

Tarique, I., Vistro, W. A., Bai, X., Yang, P., Hong, C., Huang, Y., Haseeb, A., Liu, E., Gandahi, N. S., Xu, M., Liu, Y., and Chen, Q. (2019b). LIPOPHAGY: a novel form of steroidogenic activity within the LEYDIG cell during the reproductive cycle of turtle. Reprod. Biol. Endocrinol. 17, 19.
LIPOPHAGY: a novel form of steroidogenic activity within the LEYDIG cell during the reproductive cycle of turtle.Crossref | GoogleScholarGoogle Scholar | 30738428PubMed |

Tarique, I., Haseeb, A., Bai, X., Li, W., Yang, P., Huang, Y., Yang, S., Xu, M., Zhang, Y., Vistro, W. A., Fazlani, S. A., and Chen, Q. (2020). Cellular Evidence of CD63-Enriched Exosomes and Multivesicular Bodies within the Seminiferous Tubule during the Spermatogenesis of Turtles. Microsc. Microanal. 26, 148–156.
Cellular Evidence of CD63-Enriched Exosomes and Multivesicular Bodies within the Seminiferous Tubule during the Spermatogenesis of Turtles.Crossref | GoogleScholarGoogle Scholar | 31753050PubMed |

Trigg, N. A., Eamens, A. L., and Nixon, B. (2019). The contribution of epididymosomes to the sperm small RNA profile. Reproduction 157, R209–R223.
The contribution of epididymosomes to the sperm small RNA profile.Crossref | GoogleScholarGoogle Scholar | 30780129PubMed |

Ujjan, N., Liu, Y., Chen, H., Yang, P., Waqas, Y., Liu, T., Gandahi, D. J., Huang, Y., Wang, L., Song, X., Rajput, I., Wang, T., and Chen, Q. (2016). Novel cellular evidence of lipophagy within the Sertoli cells during spermatogenesis in the turtle. Aging (Albany N.Y.) 9, 41–51.
Novel cellular evidence of lipophagy within the Sertoli cells during spermatogenesis in the turtle.Crossref | GoogleScholarGoogle Scholar |

van Niel, G., Porto-Carreiro, I., Simoes, S., and Raposo, G. (2006). Exosomes: A Common Pathway for a Specialized Function. J. Biochem. 140, 13–21.
Exosomes: A Common Pathway for a Specialized Function.Crossref | GoogleScholarGoogle Scholar | 16877764PubMed |

Verderame, M. (2014). The Involvement of the Androgen Receptor in the Secretion of the Epididymal corpusin the Lizard Podarcis sicula. Int. J. Zool. 2014, 457830.
The Involvement of the Androgen Receptor in the Secretion of the Epididymal corpusin the Lizard Podarcis sicula.Crossref | GoogleScholarGoogle Scholar |

Waqas, M. Y., Liu, T., Yang, P., Ahmed, N., Zhang, Q., Hu, L., Hong, C., and Chen, Q. (2016). Morphological and ultrastructural study of the efferent ductules in the Chinese soft-shelled turtle Pelodiscus sinensis. J Exp Zool A Ecol Genet Physiol 325, 122–131.
Morphological and ultrastructural study of the efferent ductules in the Chinese soft-shelled turtle Pelodiscus sinensis.Crossref | GoogleScholarGoogle Scholar | 26700193PubMed |

Yanagimachi, R., Kamiguchi, Y., Mikamo, K., Suzuki, F., and Yanagimachi, H. (1985). Maturation of Spermatozoa in the Epididymis of the Chinese-Hamster. Am. J. Anat. 172, 317–330.
Maturation of Spermatozoa in the Epididymis of the Chinese-Hamster.Crossref | GoogleScholarGoogle Scholar | 3887886PubMed |

Yang, P., Ahmad, N., Hunag, Y., Ullah, S., Zhang, Q., Waqas, Y., Liu, Y., Li, Q., Hu, L., and Chen, Q. (2015). Telocytes: novel interstitial cells present in the testis parenchyma of the Chinese soft-shelled turtle Pelodiscus sinensis. J. Cell. Mol. Med. 19, 2888–2899.
Telocytes: novel interstitial cells present in the testis parenchyma of the Chinese soft-shelled turtle Pelodiscus sinensis.Crossref | GoogleScholarGoogle Scholar | 26769239PubMed |

Yang, P., Ahmed, N., Wang, L. L., Chen, H., Waqas, Y., Liu, T. F., Haseeb, A., Bangulzai, N., Huang, Y. F., and Chen, Q. S. (2017). In vivo autophagy and biogenesis of autophagosomes within male haploid cells during spermiogenesis. Oncotarget 8, 56791–56801.
In vivo autophagy and biogenesis of autophagosomes within male haploid cells during spermiogenesis.Crossref | GoogleScholarGoogle Scholar | 28915631PubMed |

Yu, Y., Wang, J., Zhou, L., Li, H., Zheng, B., and Yang, S. (2021). CFAP43-mediated intra-manchette transport is required for sperm head shaping and flagella formation. Zygote 29, 75–81.
CFAP43-mediated intra-manchette transport is required for sperm head shaping and flagella formation.Crossref | GoogleScholarGoogle Scholar | 33046149PubMed |

Zhang, L., Han, X. K., Qi, Y. Y., Liu, Y., and Chen, Q. S. (2008). Seasonal effects on apoptosis and proliferation of germ cells in the testes of the Chinese soft-shelled turtle, Pelodiscus sinensis. Theriogenology 69, 1148–1158.
Seasonal effects on apoptosis and proliferation of germ cells in the testes of the Chinese soft-shelled turtle, Pelodiscus sinensis.Crossref | GoogleScholarGoogle Scholar | 18377973PubMed |

Zhou, W., Stanger, S. J., Anderson, A. L., Bernstein, I. R., De Iuliis, G. N., McCluskey, A., McLaughlin, E. A., Dun, M. D., and Nixon, B. (2019). Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions. BMC Biol. 17, 35, 1-18.
Mechanisms of tethering and cargo transfer during epididymosome-sperm interactions.Crossref | GoogleScholarGoogle Scholar | 30999907PubMed |