Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
COMMENT AND RESPONSE

Commentary: lessons from molecular genetic studies on reporting false-positive results

Grant W. Montgomery https://orcid.org/0000-0002-4140-8139
+ Author Affiliations
- Author Affiliations

Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Qld 4072, Australia. Email: g.montgomery1@uq.edu.au

Reproduction, Fertility and Development 32(16) 1298-1300 https://doi.org/10.1071/RD20281
Submitted: 19 October 2020  Accepted: 21 October 2020   Published: 23 November 2020

Abstract

Poor replication of published research results is the subject of debate. A common problem is the failure to adequately account for multiple testing issues. In this regard, the evolution of mapping studies to identify genetic risk factors for common diseases has been instructive. Large genome-wide association studies (GWAS) reliably detect the genetic factors with small effects that contribute to risk for many common diseases. GWAS superseded candidate gene studies from the previous decade and looking back, almost no genetic risk factors reported from earlier candidate gene studies replicate in the GWAS results. Candidate gene studies often used small samples and failed to appreciate and adequately account for the multiple testing issues. The failure to replicate results from most candidate gene studies highlights the importance of study power and appropriate statistical analysis to prevent publication of false-positive results.

Keywords: gene expression, genetics, genotyping, reproduction.


References

Chabris, C. F., Hebert, B. M., Benjamin, D. J., Beauchamp, J., Cesarini, D., van der Loos, M., Johannesson, M., Magnusson, P. K., Lichtenstein, P., Atwood, C. S., Freese, J., Hauser, T. S., Hauser, R. M., Christakis, N., and Laibson, D. (2012). Most reported genetic associations with general intelligence are probably false positives. Psychol. Sci. 23, 1314–1323.
Most reported genetic associations with general intelligence are probably false positives.Crossref | GoogleScholarGoogle Scholar | 23012269PubMed |

Duncan, L. E., Ostacher, M., and Ballon, J. (2019). How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete. Neuropsychopharmacology 44, 1518–1523.
How genome-wide association studies (GWAS) made traditional candidate gene studies obsolete.Crossref | GoogleScholarGoogle Scholar | 30982060PubMed |

Fadista, J., Manning, A. K., Florez, J. C., and Groop, L. (2016). The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants. Eur. J. Hum. Genet. 24, 1202–1205.
The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants.Crossref | GoogleScholarGoogle Scholar | 26733288PubMed |

Fung, J. N., Mortlock, S., Girling, J. E., Holdsworth-Carson, S. J., Teh, W. T., Zhu, Z., Lukowski, S. W., McKinnon, B. D., McRae, A., Yang, J., Healey, M., Powell, J. E., Rogers, P. A. W., and Montgomery, G. W. (2018). Genetic regulation of disease risk and endometrial gene expression highlights potential target genes for endometriosis and polycystic ovarian syndrome. Sci. Rep. 8, 11424.
Genetic regulation of disease risk and endometrial gene expression highlights potential target genes for endometriosis and polycystic ovarian syndrome.Crossref | GoogleScholarGoogle Scholar | 30061686PubMed |

GTEx Consortium (2017). Genetic effects on gene expression across human tissues. Nature 550, 204–213.
Genetic effects on gene expression across human tissues.Crossref | GoogleScholarGoogle Scholar | 29022597PubMed |

Ioannidis, J. P. (2005). Why most published research findings are false. PLoS Med. 2, e124.
Why most published research findings are false.Crossref | GoogleScholarGoogle Scholar | 16285839PubMed |

Montgomery, G. W., Nyholt, D. R., Zhao, Z. Z., Treloar, S. A., Painter, J. N., Missmer, S. A., Kennedy, S. H., and Zondervan, K. T. (2008). The search for genes contributing to endometriosis risk. Hum. Reprod. Update 14, 447–457.
The search for genes contributing to endometriosis risk.Crossref | GoogleScholarGoogle Scholar | 18535005PubMed |

Mortlock, S., Kendarsari, R. I., Fung, J. N., Gibson, G., Yang, F., Restuadi, R., Girling, J. E., Holdsworth-Carson, S. J., Teh, W. T., Lukowski, S. W., Healey, M., Qi, T., Rogers, P. A. W., Yang, J., McKinnon, B., and Montgomery, G. W. (2020). Tissue specific regulation of transcription in endometrium and association with disease. Hum. Reprod. 35, 377–393.
Tissue specific regulation of transcription in endometrium and association with disease.Crossref | GoogleScholarGoogle Scholar | 32103259PubMed |

Pe’er, I., Yelensky, R., Altshuler, D., and Daly, M. J. (2008). Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385.
Estimation of the multiple testing burden for genomewide association studies of nearly all common variants.Crossref | GoogleScholarGoogle Scholar | 18348202PubMed |

Rahmioglu, N., Missmer, S. A., Montgomery, G. W., and Zondervan, K. T. (2012). Insights into assessing the genetics of endometriosis. Curr. Obstet. Gynecol. Rep. 1, 124–137.
Insights into assessing the genetics of endometriosis.Crossref | GoogleScholarGoogle Scholar | 22924156PubMed |

Sapkota, Y., Steinthorsdottir, V., Morris, A. P., Fassbender, A., Rahmioglu, N., De Vivo, I., Buring, J. E., Zhang, F., Edwards, T. L., Jones, S., O, D., Peterse, D., Rexrode, K. M., Ridker, P. M., Schork, A. J., MacGregor, S., Martin, N. G., Becker, C. M., Adachi, S., Yoshihara, K., Enomoto, T., Takahashi, A., Kamatani, Y., Matsuda, K., Kubo, M., Thorleifsson, G., Geirsson, R. T., Thorsteinsdottir, U., Wallace, L. M., iPSYCH-SSI-Broad Group Yang, J., Velez Edwards, D. R., Nyegaard, M., Low, S. K., Zondervan, K. T., Missmer, S. A., D’Hooghe, T., Montgomery, G. W., Chasman, D. I., Stefansson, K., Tung, J. Y., and Nyholt, D. R. (2017). Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism. Nat. Commun. 8, 15539.
Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism.Crossref | GoogleScholarGoogle Scholar | 28537267PubMed |

The International HapMap Consortium (2005). A haplotype map of the human genome. Nature 437, 1299–1320.
A haplotype map of the human genome.Crossref | GoogleScholarGoogle Scholar | 16255080PubMed |

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., and Yang, J. (2017). 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22.
10 years of GWAS discovery: biology, function, and translation.Crossref | GoogleScholarGoogle Scholar | 28686856PubMed |

Westra, H. J., Peters, M. J., Esko, T., Yaghootkar, H., Schurmann, C., Kettunen, J., Christiansen, M. W., Fairfax, B. P., Schramm, K., Powell, J. E., Zhernakova, A., Zhernakova, D. V., Veldink, J. H., Van den Berg, L. H., Karjalainen, J., Withoff, S., Uitterlinden, A. G., Hofman, A., Rivadeneira, F., ‘t Hoen, P. A. C., Reinmaa, E., Fischer, K., Nelis, M., Milani, L., Melzer, D., Ferrucci, L., Singleton, A. B., Hernandez, D. G., Nalls, M. A., Homuth, G., Nauck, M., Radke, D., Volker, U., Perola, M., Salomaa, V., Brody, J., Suchy-Dicey, A., Gharib, S. A., Enquobahrie, D. A., Lumley, T., Montgomery, G. W., Makino, S., Prokisch, H., Herder, C., Roden, M., Grallert, H., Meitinger, T., Strauch, K., Li, Y., Jansen, R. C., Visscher, P. M., Knight, J. C., Psaty, B. M., Ripatti, S., Teumer, A., Frayling, T. M., Metspalu, A., van Meurs, J. B., and Franke, L. (2013). Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243.
Systematic identification of trans eQTLs as putative drivers of known disease associations.Crossref | GoogleScholarGoogle Scholar | 24013639PubMed |