Register      Login
International Journal of Wildland Fire International Journal of Wildland Fire Society
Journal of the International Association of Wildland Fire
RESEARCH ARTICLE (Open Access)

Fires and their key drivers in Mexico

Laura E. Montoya A B , Rogelio O. Corona-Núñez A C D and Julio E. Campo https://orcid.org/0000-0002-7595-8593 A *
+ Author Affiliations
- Author Affiliations

A Instituto de Ecología, Universidad Nacional Autónoma de México, AP 2075, Ciudad Universitaria, Coyoacán 04510, Mexico City, Mexico.

B Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria), Coyoacán 04510, CDMX, Mexico.

C Facultad de Ciencias, Universidad Nacional Autónoma de México, CU, Coyoacán 04510, Mexico City, Mexico.

D Procesos y Sistemas de Información en Geomática SA de CV, Calle 5 Viveros de Petén No. 18, Viveros del Valle, Tlalnepantla 54060, Mexico State, Mexico.

* Correspondence to: jcampo@ecologia.unam.mx

International Journal of Wildland Fire 32(5) 651-664 https://doi.org/10.1071/WF22154
Submitted: 9 July 2022  Accepted: 18 February 2023   Published: 14 March 2023

© 2023 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of IAWF. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Background: Despite the regional and global effects of biomass burning at national and pantropical scales, little effort has focused on determining the influence of climate and socioeconomic conditions on fire regimes in tropical regions.

Aims: We explored the climate and human factors that explain remotely sensed burnt area and fire abundance in Mexico.

Methods: We used MCD64A1 data and climate and socioeconomic metrics to understand factors explaining the variation in number of fires and burned area.

Key results: The largest burned area (41.9% of the total) occurred in temperate forests, grasslands and hydrophilic vegetation, with numerous fire events of medium relative size. The next most extensive burned area (38%) was observed in croplands, with numerous small-size fires. The third group (17.8%) occurred in tropical forests, which had the smallest and most frequent fires. Finally, a fourth group (11.9%) was composed of shrublands, which showed the largest fire sizes and lowest-frequency events. The variability of burned area was related to variations in temperature and precipitation, poverty index, altitude, and distance to water bodies.

Conclusions and Implications: Our analysis suggests that an assessment integrating climate, human and topographic metrics predicts burned area and may improve fire forecasting in Mexico landscapes.

Keywords: biomass burning, burned area, climate, fires, fire frequency, human influences, key drivers, seasonal, spatial.


References

Afifi A, May S, Donatello RA, Clark VA (2019) ‘Practical multivariate analysis.’ (CRC Press: Florida, USA)
| Crossref |

Agbeshie AA, Abugre S, Atta-Darkwa T, Awuah R (2022) A review of the effects of forest fire on soil properties. Journal of Forestry Research 33, 1419–1441.
A review of the effects of forest fire on soil properties.Crossref | GoogleScholarGoogle Scholar |

Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmospheric Chemistry and Physics 11, 4039–4072.
Emission factors for open and domestic biomass burning for use in atmospheric models.Crossref | GoogleScholarGoogle Scholar |

Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, DeFries RS, Collatz GJ, Hantson S, Kloster S, Bachelet D, Forrest M, Lasslop G, Li F, Mangeon S, Melton JR, Yue C, Randerson JT (2017) A human-driven decline in global burned area. Science 356, 1356–1362.
A human-driven decline in global burned area.Crossref | GoogleScholarGoogle Scholar |

Archibald S, Roy DP, van Wilgen BW, Scholes RJ (2009) What limits fire? An examination of drivers of burnt area in southern Africa. Global Change Biology 15, 613–630.
What limits fire? An examination of drivers of burnt area in southern Africa.Crossref | GoogleScholarGoogle Scholar |

Archibald S, Lehmann CER, Belcher CM, Bond WJ, Bradstock RA, Daniau A-L, Dexter KG, Forrestel EJ, Greve M, He T, Higgins SI, Hoffmann WA, Lamont BB, McGlinn DJ, Moncrieff GR, Osborne CP, Pausas JG, Price O, Ripley BS, Rogers BM, Schwilk DW, Simon MF, Turetsky MR, van der Werf GR, Zanne AE (2018) Biological and geophysical feedbacks with fire in the Earth system. Environmental Research Letters 13, 033003
Biological and geophysical feedbacks with fire in the Earth system.Crossref | GoogleScholarGoogle Scholar |

Artés T, Oom D, de Rigo D, Durrant TH, Maianti P, Libertà G, San-Miguel-Ayanz J (2019) A global wildfire dataset for the analysis of fire regimes and fire behaviour. Scientific Data 6, 296
A global wildfire dataset for the analysis of fire regimes and fire behaviour.Crossref | GoogleScholarGoogle Scholar |

Balch JK, Bradley BA, Abatzoglou JT, Nagy RC, Fusco EJ, Mahood AL (2017) Human-started wildfires expand the fire niche across the United States. Proceedings of the National Academy of Sciences 114, 2946–2951.
Human-started wildfires expand the fire niche across the United States.Crossref | GoogleScholarGoogle Scholar |

Benali A, Mota B, Carvalhais N, Oom D, Miller LM, Campagnolo ML, Pereira JMC (2017) Bimodal fire regimes unveil a global-scale anthropogenic fingerprint. Global Ecology and Biogeography 26, 799–811.
Bimodal fire regimes unveil a global-scale anthropogenic fingerprint.Crossref | GoogleScholarGoogle Scholar |

Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytologist 165, 525–538.
The global distribution of ecosystems in a world without fire.Crossref | GoogleScholarGoogle Scholar |

Boschetti L, Roy DP, Giglio L, Huang H, Zubkova M, Humber ML (2019) Global validation of the Collection 6 MODIS burned area product. Remote Sensing of Environment 235, 111490
Global validation of the Collection 6 MODIS burned area product.Crossref | GoogleScholarGoogle Scholar |

Bowman DMJS, Kolden CA, Abatzoglou JT, Johnston FH, van der Werf GR, Flannigan M (2020) Vegetation fires in the Anthropocene. Nature Reviews Earth & Environment 1, 500–515.
Vegetation fires in the Anthropocene.Crossref | GoogleScholarGoogle Scholar |

Brey SJ, Barnes EA, Pierce JR, Swann ALS, Fischer EV (2021) Past variance and future projections of the environmental conditions driving western US summertime wildfire burn area. Earth’s Future 9, e2020EF001645
Past variance and future projections of the environmental conditions driving western US summertime wildfire burn area.Crossref | GoogleScholarGoogle Scholar |

Bruun TB, de Neergaard A, Lawrence D, Ziegler AD (2009) Environmental consequences of the demise in swidden cultivation in Southeast Asia: carbon storage and soil quality. Human Ecology 37, 375–388.
Environmental consequences of the demise in swidden cultivation in Southeast Asia: carbon storage and soil quality.Crossref | GoogleScholarGoogle Scholar |

Campo J (2016) Shift from ecosystem P to N limitation at precipitation gradient in tropical dry forests at Yucatan, Mexico. Environmental Research Letters 11, 095006
Shift from ecosystem P to N limitation at precipitation gradient in tropical dry forests at Yucatan, Mexico.Crossref | GoogleScholarGoogle Scholar |

Campo J, Merino A (2016) Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems. Global Change Biology 22, 1942–1956.
Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.Crossref | GoogleScholarGoogle Scholar |

Canadell JG, Meyer CP, Cook GD, Dowdy A, Briggs PR, Knauer J, Pepler A, Haverd V (2021) Multi-decadal increase of forest burned area in Australia is linked to climate change. Nature Communications 12, 6921
Multi-decadal increase of forest burned area in Australia is linked to climate change.Crossref | GoogleScholarGoogle Scholar |

Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486, 59–67.
Biodiversity loss and its impact on humanity.Crossref | GoogleScholarGoogle Scholar |

Challenger A, Soberón J (2008) Los ecosistemas terrestres. In ‘Capital natural de México, Vol. I: conocimiento actual de la biodiversidad’. (Ed. J Sarukhán) pp. 87–108. (CONABIO: Mexico) [In Spanish]

Chen Y, Morton DC, Andela N, van der Werf GR, Giglio L, Randerson JT (2017) A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nature Climate Change 7, 906–911.
A pan-tropical cascade of fire driven by El Niño/Southern Oscillation.Crossref | GoogleScholarGoogle Scholar |

Chuvieco E, Giglio L, Justice C (2008) Global characterization of fire activity: toward defining fire regimes from earth observation data. Global Change Biology 14, 1488–1502.
Global characterization of fire activity: toward defining fire regimes from earth observation data.Crossref | GoogleScholarGoogle Scholar |

Cochrane MA, Ryan KC (2009) Fire and fire ecology: Concepts and principles. In ‘Tropical fire ecology’. (Ed. MA Cochrane) pp. 25–62. (Springer: Berlin)
| Crossref |

Collins L, Clarke H, Clarke MF, McColl Gausden SC, Nolan RH, Penman T, Bradstock R, Varner M (2022) Warmer and drier conditions have increased the potential for large and severe fire seasons across south‐eastern Australia. Global Ecology and Biogeography 31, 1933–1948.
Warmer and drier conditions have increased the potential for large and severe fire seasons across south‐eastern Australia.Crossref | GoogleScholarGoogle Scholar |

CONAFOR (2020) ‘Reporte nacional de incendios forestales.’ (Jalisco) https://www.gob.mx/cms/uploads/attachment/file/604834/Cierre_de_la_Temporada_2020.PDF [In Spanish]

CONANP (2014) Áreas Naturales Protegidas de México. Serie cartográfica Escala 1:100 000 [Dataset]. Comisión Nacional de Áreas Naturales Protegidas. (CONAFOR: Mexico City) [In Spanish]

CONAPO (2011) Índices de marginación por entidad federativa y municipio, 2010 [Dataset]. Consejo Nacional de Población. Available at http://www.conapo.gob.mx/publicaciones/indice2010.html [In Spanish]

Conde C, Estrada F, Martínez-López B, Sanchez O, Gay Garcia C (2011) Regional climate change scenarios for México. Atmosfera 24, 125–140.

Corona‐Núñez RO, Campo JE (2023) Climate and socioeconomic drivers of biomass burning and carbon emissions from fires in tropical dry forests: a pantropical analysis. Global Change Biology 29, 1062–1079.
Climate and socioeconomic drivers of biomass burning and carbon emissions from fires in tropical dry forests: a pantropical analysis.Crossref | GoogleScholarGoogle Scholar |

Corona-Núñez RO, Campo J, Williams M (2018) Aboveground carbon storage in tropical dry forest plots in Oaxaca, Mexico. Forest Ecology and Management 409, 202–214.
Aboveground carbon storage in tropical dry forest plots in Oaxaca, Mexico.Crossref | GoogleScholarGoogle Scholar |

Corona‐Núñez RO, Li F, Campo JE (2020) Fires represent an important source of carbon emissions in Mexico. Global Biogeochemical Cycles 34, e2020GB006815
Fires represent an important source of carbon emissions in Mexico.Crossref | GoogleScholarGoogle Scholar |

Cruz-López M, López-Saldaña G (2011) Assessment of affected areas by forest fires in Mexico. In ‘Advances in remote sensing and GIS applications in forest fire management from local to global assessments’. (Eds Ayanz J, Gitas I, Camia A, Oliveira S) pp. 81–86. (European Commission: STRESA)

de la Peña‐Domene M, Tapia GR, Mesa‐Sierra N, Rivero‐Villar A, Giardina CP, Johnson NG, Campo J, Gillespie T (2022) Climatic and edaphic‐based predictors of normalized difference vegetation index in tropical dry landscapes: a pantropical analysis. Global Ecology and Biogeography 31, 1850–1863.
Climatic and edaphic‐based predictors of normalized difference vegetation index in tropical dry landscapes: a pantropical analysis.Crossref | GoogleScholarGoogle Scholar |

Díaz-Padilla G, Sánchez-Cohen I, Guajardo-Panes RA, del Ángel-Pérez AL, Ruíz-Corral A, Medina-García G, Ibarra-Castillo D (2011) Mapping of the aridity index and its population distribution in Mexico. Revista Chapingo Serie Ciencias Forestales y Del Ambiente 17, 267–275.
Mapping of the aridity index and its population distribution in Mexico.Crossref | GoogleScholarGoogle Scholar |

Duane A, Castellnou M, Brotons L (2021) Towards a comprehensive look at global drivers of novel extreme wildfire events. Climatic Change 165, 43
Towards a comprehensive look at global drivers of novel extreme wildfire events.Crossref | GoogleScholarGoogle Scholar |

Dunbar-Irwin M, Safford H (2016) Climatic and structural comparison of yellow pine and mixed-conifer forests in northern Baja California (México) and the eastern Sierra Nevada (California, USA). Forest Ecology and Management 363, 252–266.
Climatic and structural comparison of yellow pine and mixed-conifer forests in northern Baja California (México) and the eastern Sierra Nevada (California, USA).Crossref | GoogleScholarGoogle Scholar |

Dupuy J, Fargeon H, Martin-StPaul N, Pimont F, Ruffault J, Guijarro M, Hernando C, Madrigal J, Fernandes P (2020) Climate change impact on future wildfire danger and activity in southern Europe: a review. Annals of Forest Science 77, 35
Climate change impact on future wildfire danger and activity in southern Europe: a review.Crossref | GoogleScholarGoogle Scholar |

Earl N, Simmonds I (2018) Spatial and temporal variability and trends in 2001–2016 global fire activity. Journal of Geophysical Research: Atmospheres 123, 2524–2536.
Spatial and temporal variability and trends in 2001–2016 global fire activity.Crossref | GoogleScholarGoogle Scholar |

Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The Shuttle Radar Topography Mission. Reviews of Geophysics 45, RG2004
The Shuttle Radar Topography Mission.Crossref | GoogleScholarGoogle Scholar |

Fick SE, Hijmans RJ (2017) WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37, 4302–4315.
WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |

Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM (2009) Implications of changing climate for global wildland fire. International Journal of Wildland Fire 18, 483–507.
Implications of changing climate for global wildland fire.Crossref | GoogleScholarGoogle Scholar |

Forkel M, Dorigo W, Lasslop G, Chuvieco E, Hantson S, Heil A, Teubner I, Thonicke K, Harrison SP (2019) Recent global and regional trends in burned area and their compensating environmental controls. Environmental Research Communications 1, 051005
Recent global and regional trends in burned area and their compensating environmental controls.Crossref | GoogleScholarGoogle Scholar |

Galvin KA, Reid RS (2010) People in savanna ecosystems: land use, change, and sustainability. In ‘Ecosystem function in savannas: measurement and modeling at landscape to global scales’. (Eds MJ Hill, NP Hanan) pp. 481–495. (CRC Press: Boca Raton, FL, USA)
| Crossref |

Giglio L, Justice C, Boschetti L, Roy D (2021) MCD64A1 MODIS/Terra+Aqua Burned Area Monthly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. https://lpdaac.usgs.gov/products/mcd64a1v006/

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202, 18–27.
Google earth engine: planetary-scale geospatial analysis for everyone.Crossref | GoogleScholarGoogle Scholar |

Haas O, Prentice IC, Harrison SP (2022) Global environmental controls on wildfire burnt area, size, and intensity. Environmental Research Letters 17, 065004
Global environmental controls on wildfire burnt area, size, and intensity.Crossref | GoogleScholarGoogle Scholar |

Harrison SP, Prentice IC, Bloomfield KJ, Dong N, Forkel M, Forrest M, Ningthoujam RK, Pellegrini A, Shen Y, Baudena M, Cardoso AW, Huss JC, Joshi J, Oliveras I, Pausas JG, Simpson KJ (2021) Understanding and modelling wildfire regimes: an ecological perspective. Environmental Research Letters 16, 125008
Understanding and modelling wildfire regimes: an ecological perspective.Crossref | GoogleScholarGoogle Scholar |

Hartmann H, Bastos A, Das AJ, Esquivel-Muelbert A, Hammond WM, Martínez-Vilalta J, McDowell NG, Powers JS, Pugh TAM, Ruthrof KX, Allen CD (2022) Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology 73, 673–702.
Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide.Crossref | GoogleScholarGoogle Scholar |

Hijmans RJ, van Etten J, Sumner M, Cheng J, Baston D, Bevan A, Bivand R, Busetto L, Canty M, Fasoli B, Forrest D, Ghosh A, Golicher D, Gray J, Greenberg JA, Hiemstra P, Hingee K, Ilich A, Karney C, Mattiuzzi M, Mosher S, Naimi B, Nowosad J, Pebesma E, Lamigueiro OP, Racine EB, Rowlingson B, Shortridge A, Venables B, Wueest R (2020) Package ‘raster’, Geographic Data Analysis and Modeling. Available at https://CRAN.R-project.org/package=raster

Houghton RA, Nassikas AA (2017) Global and regional fluxes of carbon from land use and land cover change 1850–2015. Global Biogeochemical Cycles 31, 456–472.
Global and regional fluxes of carbon from land use and land cover change 1850–2015.Crossref | GoogleScholarGoogle Scholar |

INEGI (2003) Conjunto de datos vectoriales de la carta de uso del suelo y vegetación. Escala: 1:1000000. Serie II. Continuo Nacional [Dataset]. Instituto Nacional de Estadística, Geografía e Informática. Available at https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825267865 [In Spanish]

INEGI (2005) Conjunto de datos vectoriales de la carta de uso del suelo y vegetación. Escala 1:250000. Serie III. Continuo Nacional [Dataset]. Instituto Nacional de Estadística, Geografía e Informática. Available at https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825007022 [In Spanish]

INEGI (2009) Conjunto de datos vectoriales de la carta de uso del suelo y vegetación. Escala 1:250000. Serie IV. Conjunto Nacional [Dataset]. Instituto Nacional de Estadística, Geografía e Informática. [In Spanish]

INEGI (2013) Conjunto de datos vectoriales de la carta de uso del suelo y vegetación. Escala 1:250000. Serie V. Conjunto Nacional [Dataset]. Instituto Nacional de Estadística, Geografía e Informática. Available at https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825007024 [In Spanish]

INEGI (2017) Conjunto de datos vectoriales de la carta de uso del suelo y vegetación. Escala 1:250 000. Serie VI. Conjunto Nacional [Dataset]. Instituto Nacional de Estadística, Geografía e Informática. Available at https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463598459https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=889463598459 [In Spanish]

IPCC (2021) Climate change 2021: Synthesis report. In ‘Contribution of working groups I, II and III to the sixth assessment report of the Intergovernmental Panel on Climate Change’. (Eds V Malsson‐Delmonte, P Zhai, A Pirani, et al.) (Cambridge: Geneva)

Jiao T, Williams CA, de Kauwe MG, Schwalm CR, Medlyn BE (2021) Patterns of post‐drought recovery are strongly influenced by drought duration, frequency, post‐drought wetness, and bioclimatic setting. Global Change Biology 27, 4630–4643.
Patterns of post‐drought recovery are strongly influenced by drought duration, frequency, post‐drought wetness, and bioclimatic setting.Crossref | GoogleScholarGoogle Scholar |

Kassambara A, Mundt F (2020) Factoextra: extract and visualize the results of multivariate data analyses. Available at https://CRAN.R-project.org/package=factoextra

Keeley JE (2004) Impact of antecedent climate on fire regimes in coastal California. International Journal of Wildland Fire 13, 173–182.
Impact of antecedent climate on fire regimes in coastal California.Crossref | GoogleScholarGoogle Scholar |

Kelley DI, Bistinas I, Whitley R, Burton C, Marthews TR, Dong N (2019) How contemporary bioclimatic and human controls change global fire regimes. Nature Climate Change 9, 690–696.
How contemporary bioclimatic and human controls change global fire regimes.Crossref | GoogleScholarGoogle Scholar |

Kelly LT, Brotons L (2017) Using fire to promote biodiversity. Science 355, 1264–1265.
Using fire to promote biodiversity.Crossref | GoogleScholarGoogle Scholar |

Kelly LT, Giljohann KM, Duane A, Aquilué N, Archibald S, Batllori E, Bennett AF, Buckland ST, Canelles Q, Clarke MF, Fortin M-J, Hermoso V, Herrando S, Keane RE, Lake FK, McCarthy MA, Morán-Ordóñez A, Parr CL, Pausas JG, Penman TD, Regos A, Rumpff L, Santos JL, Smith AL, Syphard AD, Tingley MW, Brotons L (2020) Fire and biodiversity in the Anthropocene. Science 370, eabb0355
Fire and biodiversity in the Anthropocene.Crossref | GoogleScholarGoogle Scholar |

Kirchmeier‐Young MC, Gillett NP, Zwiers FW, Cannon AJ, Anslow FS (2019) Attribution of the influence of human‐induced climate change on an extreme fire season. Earth’s Future 7, 2–10.
Attribution of the influence of human‐induced climate change on an extreme fire season.Crossref | GoogleScholarGoogle Scholar |

Krawchuk MA, Moritz MA, Parisien M-A, van Dorn J, Hayhoe K (2009) Global pyrogeography: the current and future distribution of wildfire. PLoS One 4, e5102
Global pyrogeography: the current and future distribution of wildfire.Crossref | GoogleScholarGoogle Scholar |

Lasslop G, Coppola AI, Voulgarakis A, Yue C, Veraverbeke S (2019) Influence of fire on the carbon cycle and climate. Current Climate Change Reports 5, 112–123.
Influence of fire on the carbon cycle and climate.Crossref | GoogleScholarGoogle Scholar |

Linley GD, Jolly CJ, Doherty TS, Geary WL, Armenteras D, Belcher CM, Bliege Bird R, Duane A, Fletcher M-S, Giorgis MA, Haslem A, Jones GM, Kelly LT, Lee CKF, Nolan RH, Parr CL, Pausas JG, Price JN, Regos A, Ritchie EG, Ruffault J, Williamson GJ, Wu Q, Nimmo DG, Poulter B (2022) What do you mean, ‘megafire’? Global Ecology and Biogeography 31, 1906–1922.
What do you mean, ‘megafire’?Crossref | GoogleScholarGoogle Scholar |

Lizundia-Loiola J, Otón G, Ramo R, Chuvieco E (2020) A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sensing of Environment 236, 111493
A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data.Crossref | GoogleScholarGoogle Scholar |

Manson RH, Jardel Peláez EJ (2009) Perturbaciones y desatres naturales: impactos sobre las ecorregiones, la biodiversidad y el bienestar socioeconómico. In ‘Capital natural de México, Vol. I: conocimiento actual de la biodiversidad’. (Ed. J Sarukhán) pp. 131–184. (CONABIO: Mexico) [In Spanish]

McKenzie D, Miller C, Falk DA (2011) ‘The landscape ecology of fire.’ (Springer: Amsterdam)
| Crossref |

McLauchlan KK, Higuera PE, Miesel J, Rogers BM, Schweitzer J, Shuman JK, Tepley AJ, Varner JM, Veblen TT, Adalsteinsson SA, Balch JK, Baker P, Batllori E, Bigio E, Brando P, Cattau M, Chipman ML, Coen J, Crandall R, Daniels L, Enright N, Gross WS, Harvey BJ, Hatten JA, Hermann S, Hewitt RE, Kobziar LN, Landesmann JB, Loranty MM, Maezumi SY, Mearns L, Moritz M, Myers JA, Pausas JG, Pellegrini AFA, Platt WJ, Roozeboom J, Safford H, Santos F, Scheller RM, Sherriff RL, Smith KG, Smith MD, Watts AC (2020) Fire as a fundamental ecological process: research advances and frontiers. Journal of Ecology 108, 2047–2069.
Fire as a fundamental ecological process: research advances and frontiers.Crossref | GoogleScholarGoogle Scholar |

Meijer JR, Huijbregts MAJ, Schotten KCGJ, Schipper AM (2018) Global patterns of current and future road infrastructure. Environmental Research Letters 13, 064006
Global patterns of current and future road infrastructure.Crossref | GoogleScholarGoogle Scholar |

Mendoza-Ponce A, Corona-Núñez R, Kraxner F, Leduc S, Patrizio P (2018) Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico. Global Environmental Change 53, 12–23.
Identifying effects of land use cover changes and climate change on terrestrial ecosystems and carbon stocks in Mexico.Crossref | GoogleScholarGoogle Scholar |

Mendoza-Ponce AV, Corona-Núñez RO, Kraxner F, Estrada F (2020) Spatial prioritization for biodiversity conservation in a megadiverse country. Anthropocene 32, 100267
Spatial prioritization for biodiversity conservation in a megadiverse country.Crossref | GoogleScholarGoogle Scholar |

Miller PM, Kauffman JB (1998) Seedling and sprout response to slash-and-burn agriculture in a tropical deciduous forest. Biotropica 30, 538–546.
Seedling and sprout response to slash-and-burn agriculture in a tropical deciduous forest.Crossref | GoogleScholarGoogle Scholar |

Molina JR, Ortega M, Rodríguez y Silva F (2022) Scorch height and volume modeling in prescribed fires: effects of canopy gaps in Pinus pinaster stands in southern Europe. Forest Ecology and Management 506, 119979
Scorch height and volume modeling in prescribed fires: effects of canopy gaps in Pinus pinaster stands in southern Europe.Crossref | GoogleScholarGoogle Scholar |

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar |

Myers RL, Rodríguez-Trejo DA (2009) Fire in tropical pine ecosystems. In ‘Tropical fire ecology: climate change, land use, and ecosystem dynamics’. (Ed. MA Cochrane) pp. 557–605. (Springer: Berlin)

Nolan RH, Boer MM, Resco de Dios V, Caccamo G, Bradstock RA (2016) Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophysical Research Letters 43, 4229–4238.
Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia.Crossref | GoogleScholarGoogle Scholar |

Nolan RH, Blackman CJ, de Dios VR, Choat B, Medlyn BE, Li X, Bradstock RA, Boer MM (2020) Linking forest flammability and plant vulnerability to drought. Forests 11, 779
Linking forest flammability and plant vulnerability to drought.Crossref | GoogleScholarGoogle Scholar |

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the World’s forests. Science 333, 988–993.
A large and persistent carbon sink in the World’s forests.Crossref | GoogleScholarGoogle Scholar |

Parks SA, Abatzoglou JT (2020) Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017. Geophysical Research Letters 47, e2020GL089858
Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017.Crossref | GoogleScholarGoogle Scholar |

Pausas JG, Keeley JE (2019) Wildfires as an ecosystem service. Frontiers in Ecology and the Environment 17, 289–295.
Wildfires as an ecosystem service.Crossref | GoogleScholarGoogle Scholar |

Pausas JG, Keeley JE (2021) Wildfires and global change. Frontiers in Ecology and the Environment 19, 387–395.
Wildfires and global change.Crossref | GoogleScholarGoogle Scholar |

Pausas JG, Ribeiro E (2017) Fire and plant diversity at the global scale. Global Ecology and Biogeography 26, 889–897.
Fire and plant diversity at the global scale.Crossref | GoogleScholarGoogle Scholar |

Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proceedings of the National Academy of Sciences 107, 19167–19170.
Driving forces of global wildfires over the past millennium and the forthcoming century.Crossref | GoogleScholarGoogle Scholar |

Quan C, Han S, Utescher T, Zhang C, Liu Y-S (Christopher) (2013) Validation of temperature–precipitation based aridity index: Paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 386, 86–95.
Validation of temperature–precipitation based aridity index: Paleoclimatic implications.Crossref | GoogleScholarGoogle Scholar |

Randerson JT, Chen Y, van der Werf GR, Rogers BM, Morton DC (2012) Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research: Biogeosciences 117, G04012
Global burned area and biomass burning emissions from small fires.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2018) R: a language and environment for statistical computing. Available at https://www.R-project.org/

Rivera-Huerta H, Safford HD, Miller JD (2016) Patterns and trends in burned area and fire severity from 1984 to 2010 in the Sierra de San Pedro Mártir, Baja California, Mexico. Fire Ecology 12, 52–72.
Patterns and trends in burned area and fire severity from 1984 to 2010 in the Sierra de San Pedro Mártir, Baja California, Mexico.Crossref | GoogleScholarGoogle Scholar |

Rosell JA (2016) Bark thickness across the angiosperms: more than just fire. New Phytologist 211, 90–102.
Bark thickness across the angiosperms: more than just fire.Crossref | GoogleScholarGoogle Scholar |

Santín C, Doerr S (2019) Carbon. In ‘Fire effects on soil properties’. (Eds P Pereira, J Mataix-Solera, X Úbeda, G Rein, A Cerdà) pp. 115–128. (CSIRO Publishing: Melbourne, Vic., Australia)

Saynes V, Etchevers JD, Galicia L, Hidalgo C, Campo J (2012) Soil carbon dynamics in high-elevation temperate forests of Oaxaca (Mexico): thinning and rainfall effects. Bosque (Valdivia) 33, 3–11.
Soil carbon dynamics in high-elevation temperate forests of Oaxaca (Mexico): thinning and rainfall effects.Crossref | GoogleScholarGoogle Scholar |

Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007) pcaMethods – a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23, 1164–1167.
pcaMethods – a bioconductor package providing PCA methods for incomplete data.Crossref | GoogleScholarGoogle Scholar |

Trabucco A, Zomer R (2019) Global aridity index and potential evapotranspiration (ET0) climate database v2. figshare.
| Crossref |

Turco M, von Hardenberg J, AghaKouchak A, Llasat MC, Provenzale A, Trigo RM (2017) On the key role of droughts in the dynamics of summer fires in Mediterranean Europe. Scientific Reports 7, 81
On the key role of droughts in the dynamics of summer fires in Mediterranean Europe.Crossref | GoogleScholarGoogle Scholar |

Turner MG (2005) Landscape ecology: what is the state of the science. Annual Review of Ecology, Evolution, and Systematics 36, 319–344.
Landscape ecology: what is the state of the science.Crossref | GoogleScholarGoogle Scholar |

van der Werf GR, Randerson JT, Giglio L, van Leeuwen TT, Chen Y, Rogers BM, Mu M, van Marle MJE, Morton DC, Collatz GJ, Yokelson RJ, Kasibhatla PS (2017) Global fire emissions estimates during 1997–2016. Earth System Science Data 9, 697–720.
Global fire emissions estimates during 1997–2016.Crossref | GoogleScholarGoogle Scholar |

Wang SS-C, Qian Y, Leung LR, Zhang Y (2021) Identifying key drivers of wildfires in the contiguous US using machine learning and game theory interpretation. Earth’s Future 9, e2020EF001910
Identifying key drivers of wildfires in the contiguous US using machine learning and game theory interpretation.Crossref | GoogleScholarGoogle Scholar |

Wu C, Sitch S, Huntingford C, Mercado LM, Venevsky S, Lasslop G, Archibald S, Staver AC (2022) Reduced global fire activity due to human demography slows global warming by enhanced land carbon uptake. Proceedings of the National Academy of Sciences 119, e2101186119
Reduced global fire activity due to human demography slows global warming by enhanced land carbon uptake.Crossref | GoogleScholarGoogle Scholar |

Yin Y, Bloom AA, Worden J, Saatchi S, Yang Y, Williams M, Liu J, Jiang Z, Worden H, Bowman K, Frankenberg C, Schimel D (2020) Fire decline in dry tropical ecosystems enhances decadal land carbon sink. Nature Communications 11, 1900
Fire decline in dry tropical ecosystems enhances decadal land carbon sink.Crossref | GoogleScholarGoogle Scholar |

Zheng B, Ciais P, Chevallier F, Chuvieco E, Chen Y, Yang H (2021) Increasing forest fire emissions despite the decline in global burned area. Science Advances 7, eabh2646
Increasing forest fire emissions despite the decline in global burned area.Crossref | GoogleScholarGoogle Scholar |