The influence of season, habitat and diet on the faecal microbiome of the yellow-footed rock-wallaby (Petrogale xanthopus xanthopus)
Lauren Elizabeth Werner


A
B
C
D
E
F
Abstract
Knowledge of an animal’s microbiome is becoming increasingly recognised as an important consideration in the conservation of threatened species, particularly in the face of wide-spread changes to climate and rainfall patterns. The yellow-footed rock-wallaby (YFRW; Petrogale xanthopus xanthopus) is endemic to the semiarid regions of South Australia and New South Wales. This study aimed to characterise the faecal microbial diversity and its relationship to diet and season/rainfall in two geographically separated South Australian YFRW populations with differing habitat characteristics. Sequencing targeting the 16S rRNA gene revealed that location was the greatest driver of faecal microbial differences (P < 0.01), with season (P < 0.01) and the interaction of location × season also statistically significant (P < 0.01). The main phyla identified throughout were Firmicutes and Bacteroidota. Diet varied between individuals with Acacia species commonly detected at each study site, which appeared to be linked with an increase in the proportion of Firmicutes present, although further sampling is required to confirm this. Further research and continued long term monitoring is required to understand microbial functions, how the role of these microbes may affect an individual’s health, and how faecal microbiome can be manipulated to increase a species’ resilience to dry times and drought.
Keywords: ASV diversity, composition, diet, Faecal microbiome, microbial diversity, rainfall, richness, rock-wallaby.
References
Adams-Hosking C, McAlpine C, Rhodes JR, Grantham HS, Moss PT (2012) Modelling changes in the distribution of the critical food resources of a specialist folivore in response to climate change. Diversity & Distributions 18, 847-860.
| Crossref | Google Scholar |
Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, Leigh SR (2013) Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. The ISME Journal 7, 1344-1353.
| Crossref | Google Scholar | PubMed |
Amato KR, Arrieta M-C, Azad MB, Bailey MT, Broussard JL, Bruggeling CE, Claud EC, Costello EK, Davenport ER, Dutilh BE, Swain Ewald HA, Ewald P, Hanlon EC, Julion W, Keshavarzian A, Maurice CF, Miller GE, Preidis GA, Segurel L, Singer B, Subramanian S, Zhao L, Kuzawa CW (2021) The human gut microbiome and health inequities. Proceedings of the National Academy of Sciences - PNAS 118, e2017947118.
| Crossref | Google Scholar |
Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Zech Xu Z, Kightley EP, Thompson LR, Hyde ER, Gonzalez A, Knight R (2017) Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2, e00191-16.
| Crossref | Google Scholar | PubMed |
Arumugam R, Ravichandran P, Yeap SK, Sharma RSK, Zulkifly SB, Yawah D, Annavi G (2023) Application of high-throughput sequencing (HTS) to enhance the well-being of an endangered species (Malayan tapir): characterization of gut microbiome using MG-RAST. Metagenomic Data Analysis 2649, 175-194.
| Crossref | Google Scholar |
Awosile B, Crasto C, Rahman MK, Daniel I, Boggan S, Steuer A, Fritzler J (2023) Fecal microbial diversity of coyotes and wild hogs in Texas Panhandle, USA. Microorganisms 11, 1137.
| Crossref | Google Scholar |
Banerjee A, Cornejo J, Bandopadhyay R (2020) Emergent climate change impact throughout the world: call for “Microbiome Conservation” before it’s too late. Biodiversity and Conservation 29, 345-348.
| Crossref | Google Scholar |
Bates D, Mäechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1-48.
| Crossref | Google Scholar |
Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Knight R, Fierer N (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology & Biochemistry 43, 1450-1455.
| Crossref | Google Scholar | PubMed |
Blyton MDJ, Pascoe J, Hynes E, Soo RM, Hugenholtz P, Moore BD (2023) The koala gut microbiome is largely unaffected by host translocation but rather influences host diet. Frontiers in Microbiology 14, e1085090.
| Crossref | Google Scholar |
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, e90.
| Crossref | Google Scholar |
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Silva RD, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, II, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Author Correction: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37, 1091.
| Crossref | Google Scholar | PubMed |
Brice KL, Trivedi P, Jeffries TC, Blyton MDJ, Mitchell C, Singh BK, Moore BD (2019) The koala (Phascolarctos cinereus) faecal microbiome differs with diet in a wild population. PeerJ 7, e6534.
| Crossref | Google Scholar |
Budd K, Gunn JC, Finch T, Klymus K, Sitati N, Eggert LS (2020) Effects of diet, habitat, and phylogeny on the fecal microbiome of wild African savanna (Loxodonta africana) and forest elephants (L. cyclotis). Ecology and Evolution 10, 5637-5650.
| Crossref | Google Scholar | PubMed |
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences 108, 4516-4522.
| Crossref | Google Scholar |
Chen S (2023) Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. iMeta 2, e107.
| Crossref | Google Scholar | PubMed |
Chen J, He X, Huang J (2014) Diet effects in gut microbiome and obesity. Journal of Food Science 79, 442-451.
| Crossref | Google Scholar |
Cheng Y, Fox S, Pemberton D, Hogg C, Papenfuss AT, Belov K (2015) The Tasmanian devil microbiome-implications for conservation and management. Microbiome 3, e76.
| Crossref | Google Scholar |
Chhour K-L, Hinds LA, Jacques NA, Deane EM (2010) An observational study of the microbiome of the maternal pouch and saliva of the tammar wallaby, Macropus eugenii, and of the gastrointestinal tract of the pouch young. Microbiology 156, 798-808.
| Crossref | Google Scholar |
Copley PB (1983) Studies on the yellow-footed rock-wallaby, Petrogale xanthopus Gray (Marsupialia: Macropodidae) I. Distribution in South Australia. Australian Wildlife Research 10, 47-61.
| Crossref | Google Scholar |
Correa F, Torti V, Spiezio C, Checcucci A, Modesto M, Borruso L, Cavani L, Mimmo T, Cesco S, Luise D, Randrianarison RM, Gamba M, Rarojoson NJ, Sanguinetti M, Di Vito M, Bugli F, Mattarelli P, Trevisi P, Giacoma C, Sandri C (2021) Disentangling the possible drivers of Indri indri Microbiome: a threatened lemur species of Madagascar. Frontiers in Microbiology 12, 668274.
| Crossref | Google Scholar |
Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to changing climate. Ecology 86, 1704-1714.
| Crossref | Google Scholar |
De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P, Hartl DL (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences 107, 14691-14696.
| Crossref | Google Scholar |
Donohue ME, Asangba AE, Ralainirina J, Weisrock DW, Stumpf RM, Wright PC (2019) Extensive variability in the gut microbiome of a highly-specialized and critically endangered lemur species across sites. American Journal of Primatology 81, e23046.
| Crossref | Google Scholar | PubMed |
Eisenhofer R, Helgen KM, Taggart D (2021) Signatures of landscape and captivity in the gut microbiota of southern hairy-nosed wombats (Lasiorhinus latifrons). Animal Microbiome 3, 4.
| Crossref | Google Scholar |
Eisenhofer R, Brice KL, Blyton MD, Bevins SE, Leigh K, Singh BK, Helgen KM, Hough I, Daniels CB, Speight N, Moore BD (2023) Individuality and stability of the koala (Phascolarctos cinereus) faecal microbiota through time. PeerJ 11, e14598.
| Crossref | Google Scholar |
Fava F, Gitau R, Griffin BA, Gibson GR, Tuohy KM, Lovegrove JA (2013) The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome ‘at-risk’ population. International Journal of Obesity 37, 216-223.
| Crossref | Google Scholar | PubMed |
Gartner RJW, Hurwood IS (1976) The tannin and oxalic acid content of Acacia aneura (mulga). Australian Veterinary Journal 52, 194-196.
| Crossref | Google Scholar | PubMed |
Gibson RK, Broome L, Hutchinson MF (2018) Susceptibility to climate change via effects on food resources: the feeding ecology of the endangered mountain pygmy-possum (Burramys parvus). Wildlife Research 45, 539-550.
| Crossref | Google Scholar |
Groussin M, Mazel F, Alm EJ (2020) Co-evolution and co-speciation of host-gut bacteria systems. Cell Host & Microbe 28, 12-22.
| Crossref | Google Scholar | PubMed |
Gulino L-M, Ouwerkerk D, Kang AYH, Maguire AJ, Kienzle M, Klieve AV (2013) Shedding light on the microbial community of the macropod foregut using 454-amplicon pyrosequencing. PLoS ONE 8, e61463.
| Crossref | Google Scholar | PubMed |
Höglund J, Laurila A, Rödin-Mörch P (2019) Population genomics and wildlife adaptation in the face of climate change. In ‘Population genomics: wildlife’. (Eds PA Hohenlohe, OP Rajora) pp. 333–355. (Springer International Publishing: USA) 10.1007/13836_2019_69
Huang Z, Liu K, Ma W, Li D, Mo T, Liu Q (2022) The gut microbiome in human health and disease – Where are we and where are we going? A bibliometric analysis. Frontiers in Microbiology 13, e1018594.
| Crossref | Google Scholar |
Irlbeck NA, Hume ID (2003) The role of acacia in the diets of Australian marsupials? A review. Australian Mammalogy 25, 121-134.
| Crossref | Google Scholar |
Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474, 327-336.
| Crossref | Google Scholar | PubMed |
Klamt M, Thompson R, Davis J (2011) Early response of the platypus to climate warming. Global Change Biology 17, 3011-3018.
| Crossref | Google Scholar |
Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320, 1647-1651.
| Crossref | Google Scholar |
Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71, 8228-8235.
| Crossref | Google Scholar | PubMed |
Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology 73, 1576-1585.
| Crossref | Google Scholar | PubMed |
Marshall VM, Taggart DA, Ostendorf B (2018) Scale-dependent habitat analysis and implications for climate change risk for the southern hairy-nosed wombat. Australian Mammalogy 40, 162-172.
| Crossref | Google Scholar |
McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217.
| Crossref | Google Scholar | PubMed |
McSweeney CS, Collins EMC, Blackall LL, Seawright AA (2008) A review of anti-nutritive factors limiting potential use of Acacia angustissima as a ruminant feed. Animal Feed Science and Technology 147, 158-171.
| Crossref | Google Scholar |
Murray KD, Borevitz JO (2018) Axe: rapid, competitive sequence read demultiplexing using a trie. Bioinformatics 34, 3924-3925.
| Crossref | Google Scholar | PubMed |
Oksanen J, Simpson G, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Solymos P, Stevens MHM, Szoecs E, Wagner H, Barbour M, Bedward M, Bolker B, Borcard D, Carvalho G, Chirico M, De Caceres M, Durand S, Evangelista HBA, FitzJohn R, Friendly M, Furneaux B, Hannigan G, Hill MO, Lahti L, McGlinn D, Ouellette M, Ribeiro Cunha E, Smith T, Stier A, Ter Braak CJF, Weedon J, Borman T (2022) vegan: Community Ecology Package. R package version 2.6-4. Available at https://CRAN.R-project.org/package=vegan
Pannoni SB, Proffitt KM, Holben WE (2022) Non-invasive monitoring of multiple wildlife health factors by fecal microbiome analysis. Ecology and Evolution 12, e8564.
| Crossref | Google Scholar | PubMed |
Potter S, Neaves LE, Lethbridge M, Eldridge MDB (2020) Understand historical demographic processes to inform contemporary conservation of an arid zone specialist: the yellow-footed rock-wallaby. Genes 11, 154-178.
| Crossref | Google Scholar | PubMed |
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41, D590-D596.
| Crossref | Google Scholar | PubMed |
Redford KH, Segre JA, Salafsky N, del Rio CM, McAloose D (2012) Conservation and the microbiome. Conservation Biology 26, 195-197.
| Crossref | Google Scholar | PubMed |
Ribas MP, García-Ulloa M, Espunyes J, Cabezón O (2023) Improving the assessment of ecosystem and wildlife health: microbiome as an early indicator. Current Opinion in Biotechnology 81, 102923.
| Crossref | Google Scholar | PubMed |
Rohland N, Reich D (2012) Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Research 22, 939-946.
| Crossref | Google Scholar | PubMed |
Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology 9, 313-323.
| Crossref | Google Scholar | PubMed |
Ruykys L (2017) Multi-scale habitat associations of the black-footed rock-wallaby in north-western South Australia. Wildlife Research 44, 207-218.
| Crossref | Google Scholar |
Short J (1982) Habitat requirements of the brush-tailed rock-wallaby, Petrogale penicillata, in New South Wales. Australian Wildlife Research 9, 239-246.
| Crossref | Google Scholar |
Smith DA, Lethbridge MR, Allen BL, Andrew RL (2023) Inferring inter-colony movement within metapopulations of yellow-footed rock-wallabies using estimates of kinship. Conservation Genetics 24, 265-278.
| Crossref | Google Scholar |
Sommer F, Bäckhed F (2013) The gut microbiota – masters of host development and physiology. Nature Reviews Microbiology 11, 227-238.
| Crossref | Google Scholar | PubMed |
Waycott M, van Dijk KJ, Biffin E (2021) A hybrid capture RNA bait set for resolving genetic and evolutionary relationships in angiosperms from deep phylogeny to intraspecific lineage hybridization. BioRxiv 1-10.
| Crossref | Google Scholar |
West AG, Waite DW, Deines P, Bourne DG, Digby A, McKenzie VJ, Taylor MW (2019) The microbiome in threatened species conservation. Biological Conservation 229, 85-98.
| Crossref | Google Scholar |
Zhang L, Xu Z (2008) Assessing bacterial diversity in soil. Journal of Soils and Sediments 8, 379-388.
| Crossref | Google Scholar |
Zhang H, van der Wielen N, van der Hee B, Wang J, Hendriks W, Gilbert M (2020) Impact of fermentable protein, by feeding high protein diets, on microbial composition, microbial catabolic activity, gut health and beyond in pigs. Microorganisms 8, 1735.
| Crossref | Google Scholar |