Register      Login
Australian Journal of Botany Australian Journal of Botany Society
Southern hemisphere botanical ecosystems
RESEARCH ARTICLE

Defining entities in the Acacia saligna (Fabaceae) species complex using a population genetics approach

M. A. Millar A C , M. Byrne A and W. O’Sullivan B
+ Author Affiliations
- Author Affiliations

A Science Division, Department of Environment and Conservation, Locked Bag 104, Bentley Delivery Centre, Bentley, WA 6983, Australia.

B Great Western Woodlands Collaboration, City West Lotteries House, 2 Delhi Street, West Perth, WA 6005, Australia.

C Corresponding author. Email: melissa.millar@dec.wa.gov.au

Australian Journal of Botany 59(2) 137-148 https://doi.org/10.1071/BT10327
Submitted: 14 December 2010  Accepted: 7 February 2011   Published: 28 March 2011

Abstract

Traditional morphological taxonomic classification is problematic in the Acacia saligna (Labill.) H.L.Wendl. species complex. Reliable identification of entities within the species is essential due to its extensive use both in Australia and overseas, its propensity for weediness, and its ongoing development for use in agroforestry. We used a Bayesian analysis approach to assess genetic structure in populations across the species natural range and to define the natural distributions of various genetic entities. The results indicate that three highly divergent genetic entities are apparent in the A. saligna species complex with further fine-scale genetic subdivision present within two. The three primary genetic entities correspond to the informally described subsp. ‘saligna’ and subsp. ‘pruinescens’ combined, subsp. ‘stolonifera’, and subsp. ‘lindleyi’. Within this primary structure two further entities are apparent; one separating subsp. ‘saligna’/‘pruinescens’ into eastern and western populations and the other distinguishing north-western ‘lindleyi’ populations from the rest of that subspecies distribution. The north-western catchments may have been an important refugium for the species diversity. The results of the study will aid in breeding programs, conservation of natural populations and control of invasive populations of this taxon.


References

Anderson E, Thompson E (2002) A model based method for identifying species hybrids using multilocus genetic data. Genetics 160, 1217–1229.

Broadhurst L, Byrne M, Craven L, Lepschi B (2004) Genetic congruence with new species boundaries in the Melaleuca uncinata complex (Myrtaceae). Australian Journal of Botany 52, 729–737.
Genetic congruence with new species boundaries in the Melaleuca uncinata complex (Myrtaceae).Crossref | GoogleScholarGoogle Scholar |

Burgman MA (1985) Cladistics, phenetics and biogeography of populations of Boronia inornata Turcz. (Rutaceae) and the Eucalyptus diptera Andrews (Myrtaceae) species complex in Western Australia. Australian Journal of Botany 33, 419–431.
Cladistics, phenetics and biogeography of populations of Boronia inornata Turcz. (Rutaceae) and the Eucalyptus diptera Andrews (Myrtaceae) species complex in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Byrne M, Hines B (2004) Phylogeographical analysis of cpDNA variation in Eucalyptus loxophleba (Myrtaceae). Australian Journal of Botany 52, 459–470.
Phylogeographical analysis of cpDNA variation in Eucalyptus loxophleba (Myrtaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmsVChtLk%3D&md5=530e8a3ec8f6d4f38353aa14b718df86CAS |

Byrne M, MacDonald B, Coates D (2002) Phylogeographical patterns in chloroplast DNA variation within the Acacia acuminata (Leguminoseae: Mimosiodeae) complex in Western Australia. Journal of Evolutionary Biology 15, 576–587.
Phylogeographical patterns in chloroplast DNA variation within the Acacia acuminata (Leguminoseae: Mimosiodeae) complex in Western Australia.Crossref | GoogleScholarGoogle Scholar |

Byrne M, MacDonald B, Brand J (2003) Phylogeography and divergence in the chloroplast genome of Western Australian Sandalwood (Santalum spicatum). Heredity 91, 389–395.
Phylogeography and divergence in the chloroplast genome of Western Australian Sandalwood (Santalum spicatum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsF2msbY%3D&md5=a11147d91a967e6473e2c4cb3ef80b5bCAS | 14512954PubMed |

Byrne M, Yeates D, Joseph L, Kearney M, Bowler J, Williams MAJ, Cooper S, Donnellan SC, Keogh JS, Leys R, Melville J, Murphy DJ, Porch N, Wyrwoll K-H (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cjhvFGruw%3D%3D&md5=5eb34bbe1192c042ac3dedd3cbdb289dCAS | 18761619PubMed |

Chen C, Durand E, Forbes F, Francois O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Molecular Ecology Notes 7, 747–756.
Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study.Crossref | GoogleScholarGoogle Scholar |

Coates DJ, Carstairs S, Hamley VL (2003) Evolutionary patterns and genetic structure in localized and widespread species in the Stylidium caricifolium complex (Stylidiaceae). American Journal of Botany 90, 997–1008.
Evolutionary patterns and genetic structure in localized and widespread species in the Stylidium caricifolium complex (Stylidiaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsFCnu7o%3D&md5=9947a7cf75ed581e7b60b1c1bf347c2eCAS |

Corander J, Marttinen P (2006) Bayesian identification of admixture events using multilocus molecular markers. Molecular Ecology 15, 2833–2843.
Bayesian identification of admixture events using multilocus molecular markers.Crossref | GoogleScholarGoogle Scholar | 16911204PubMed |

Craven L, Lepschi BJ, Broadhurst L, Byrne M (2004) Taxonomic revision of the broombush complex in Western Australia (Myrtaceae, Melaleuca uncinata s.l.). Australian Systematic Botany 17, 255–271.
Taxonomic revision of the broombush complex in Western Australia (Myrtaceae, Melaleuca uncinata s.l.).Crossref | GoogleScholarGoogle Scholar |

Dobzhansky T (1937) ‘Genetics and the origins of species.’ (Columbia University Press: New York)

Duminil J, Caron H, Scotti I, Saint-Omer C, Petit J (2006) Blind population genetics survey of tropical rainforest trees. Molecular Ecology 15, 3505–3513.
Blind population genetics survey of tropical rainforest trees.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Ois7fO&md5=4373c57fbd0f1fcff647fc56d82e57cfCAS | 17032253PubMed |

Earl D (2009) Structure Harvester version 0.56.3. Available at http://users.soe.ucsc.edu/~deral/software/struct_harvest/ [Last accessed 24 May 2010]

Elliott CP, Byrne M (2004) Phylogenetics and the conservation of rare taxa in the Eucalyptus angustissima complex in Western Australia. Conservation Genetics 5, 39–47.
Phylogenetics and the conservation of rare taxa in the Eucalyptus angustissima complex in Western Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXos1Cmsg%3D%3D&md5=5caf36aa2b7efbee37f7ec0a2d4327d9CAS |

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=c6bed7e490ec5c50c43a0fa74d4b1f9fCAS | 15969739PubMed |

Fox JED (1995) A review of the ecological characteristics of Acacia saligna (Labill.) H.Wendl. Mulga Research Centre Journal 12, 39–55.

Francois O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174, 805–816.
Bayesian clustering using hidden Markov random fields in spatial population genetics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht12mur%2FN&md5=5d6a1315d3c7f94e39a84e9cd91ff77eCAS | 16888334PubMed |

George N, Byrne M, Maslin B, Yan G (2006) Genetic differentiation among morphological variants of Acacia saligna (Mimosaceae). Tree Genetics & Genomes 2, 109–119.
Genetic differentiation among morphological variants of Acacia saligna (Mimosaceae).Crossref | GoogleScholarGoogle Scholar |

Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. Available at http://www2.unil.ch/popgen/softwares/fstat.htm [Last accessed 5 February 2002]

Hopper S (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered infertile landscapes. Plant and Soil 322, 49–86.
OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered infertile landscapes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVWisrnN&md5=ea8f41d68d03a3e3d623b152ea4358f5CAS |

Hopper S, Gioia P (2004) The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology Evolution and Systematics 35, 623–650.
The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity.Crossref | GoogleScholarGoogle Scholar |

Hopper SD (1979) Biogeographical aspects of speciation in the southwest Australian flora. Annual Review of Systematics and Ecology 10, 399–422.
Biogeographical aspects of speciation in the southwest Australian flora.Crossref | GoogleScholarGoogle Scholar |

Latch EK, Dharmarajan D, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conservation Genetics 7, 295–302.
Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation.Crossref | GoogleScholarGoogle Scholar |

Mallet J (1995) A species definition for the modern synthesis. Trends in Ecology & Evolution 10, 294–299.
A species definition for the modern synthesis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFaksA%3D%3D&md5=287db8b9bb8c1c69f2f6da7e1396b4e7CAS |

Manel S, Gaggiotti OE, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends in Ecology & Evolution 20, 136–142.
Assignment methods: matching biological questions with appropriate techniques.Crossref | GoogleScholarGoogle Scholar |

Maslin B, McDonald M (2004) AcaciaSearch: evaluation of Acacia as a woody crop option for southern Australia. Rural Industries and Research Development Corporation, Publication Number 03/017, Canberra.

Maslin BR, McDonald MW, O’Sullivan W (2006) Acacia saligna (Coojong). Available at http://www.worldwidewattle.com/infogallery/projects/saligna.php [Last accessed 1 May 2010]

Mayr E (1942) ‘Systematics and the origin of species from the viewpoint of a zoologist.’ (Colombia University Press: New York)

Millar MA, Byrne M (2007) Characterisation of polymorphic microsatellite DNA markers for Acacia saligna (Labill.) H.L.Wendl. (Mimosaceae). Molecular Ecology Notes 7, 1372–1374.
Characterisation of polymorphic microsatellite DNA markers for Acacia saligna (Labill.) H.L.Wendl. (Mimosaceae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlslSrtw%3D%3D&md5=9e51b9abaaca8e08a88925a844b2315dCAS |

Millar MA, Byrne M, Nuberg I, Sedgley M (2008a) High outcrossing and random pollen dispersal in a planted stand of Acacia saligna subsp. ‘saligna’ revealed by paternity analysis using microsatellites. Tree Genetics & Genomes 4, 367–377.
High outcrossing and random pollen dispersal in a planted stand of Acacia saligna subsp. ‘saligna’ revealed by paternity analysis using microsatellites.Crossref | GoogleScholarGoogle Scholar |

Millar MA, Byrne M, Nuberg I, Sedgley M (2008b) A rapid PCR based diagnostic test for the identification of subspecies of Acacia saligna. Tree Genetics & Genomes 4, 625–635.
A rapid PCR based diagnostic test for the identification of subspecies of Acacia saligna.Crossref | GoogleScholarGoogle Scholar |

Myers N, Mittermeier R, Mittermeier C, da Fonseca G, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Olsr4%3D&md5=68eea4471f3df3eee26bbe838e22b4c1CAS | 10706275PubMed |

Peakall R, Smouse P (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Piry S, Luikart G, Cournet J (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. The Journal of Heredity 90, 502–503.
Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data.Crossref | GoogleScholarGoogle Scholar |

Piry S, Alapetite A, Cornuet J, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first generation migrant detection. The Journal of Heredity 95, 536–539.
GENECLASS2: a software for genetic assignment and first generation migrant detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlWlsrk%3D&md5=6699423121f11ecf705c4d987fed77e0CAS | 15475402PubMed |

Pritchard J, Stephens M, Donnely P (2000) Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

Raymond M, Rousset F (1995) GENEPOP (version 3.4): population genetics software for exact test and ecumenicism. The Journal of Heredity 86, 248–249.

Yelenik SG, Stock WD, Richardson DM (2004) Ecosystem level impacts of invasive Acacia saligna in the South African Fynbos. Restoration Ecology 12, 44–51.
Ecosystem level impacts of invasive Acacia saligna in the South African Fynbos.Crossref | GoogleScholarGoogle Scholar |