Functional traits in arborescent Cactaceae: a guideline for their measurement
Walter F. Paredes Cubas
A
B
C
D
E
Abstract
The need to understand the impacts of global change on ecosystems has driven interest in studying functional traits, which represent morphological, physiological, or phenological adaptations that determine the ecological performance of organisms. Although standardized methods exist for assessing functional traits in woody and herbaceous plants, protocols for arborescent cacti are still scarce. Cactaceae is a tropical American plant family that reaches high abundance in tropical dry ecosystems and encompasses a great diversity of form and size. Cacti perform fundamental ecosystem functions, are on the list of the most endangered plants globally and represent economically-impactful invasive species outside of the Americas. Here, we propose protocols to measure 12 functional traits in cacti, which are grouped into structural (two traits), morphological (seven traits), hydraulic–mechanical (two traits) and biophysical (one trait) categories, so as to complement ecological studies of plants and improve the understanding of their life cycle and the main environmental challenges faced by cacti.
Keywords: arborescent cacti, biophysical trait, ecological performance, functional traits, hydraulic–mechanical traits, morphological traits, protocol, standardized methods, structural traits, tropical dry ecosystems.
References
Aliscioni NL, Delbón N, Gurvich DE (2021) Spine function in Cactaceae, a review. Journal of the Professional Association for Cactus Development 23, 1-11.
| Crossref | Google Scholar |
Altesor A, Ezcurra E (2003) Functional morphology and evolution of stem succulence in cacti. Journal of Arid Environments 53(4), 557-567.
| Crossref | Google Scholar |
Altesor A, Silva C, Ezcurra E (1994) Allometric neoteny and the evolution of succulence in cacti. Botanical Journal of the Linnean Society 114(3), 283-292.
| Crossref | Google Scholar |
Arroyo-Cosultchi G, Terrazas T, Arias S, López-Mata L (2010) Delimitación de Neobuxbaumia mezcalaensis y N. multiareolata (Cactaceae) con base en análisis multivariados. Boletín de la Sociedad Botánica de México 86, 53-64 [In Spanish].
| Google Scholar |
Ceroni AH, Castro V (2014) Manual de cactus: identificación y origen. Available at https://www.minam.gob.pe/diversidadbiologica/wp-content/uploads/sites/21/2014/02/manual+de+cactus.compressed.pdf [In Spanish]
Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecology Letters 12, 351-366.
| Crossref | Google Scholar | PubMed |
Cody ML (1984) Branching patterns in columnar cacti. In ‘Being alive on land. Tasks for vegetation science’. (Eds NS Margaris, M Arianoustou-Faraggitaki, WC Oechel) vol. 13, pp. 201–236. (Springer: Dordrecht, Netherlands) 10.1007/978-94-009-6578-2_23
Cornejo DO, Simpson BB (1997) Analysis of form and function in North American columnar cacti (tribe Pachycereeae). American Journal of Botany 84(11), 1482-1501.
| Crossref | Google Scholar |
Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51(4), 335-380.
| Crossref | Google Scholar |
Delgado M (2017) Edad, tasas de crecimiento y alometría del cardón (Pachycereus pringlei) en la península de Baja California. Tesis de doctorado, Centro de Investigaciones Biológicas del Noroeste, S.C. Available at http://cibnor.repositorioinstitucional.mx/jspui/handle/1001/864 [In Spanish]
Díaz S, Lavorel S, Chapin FS, Tecco PA, Gurvich DE, Grigulis K (2007) Functional Diversity at the crossroads between ecosystem functioning and environmental filters. In ‘Terrestrial ecosystems in a changing world. global change – The IGBP Series’. (Eds JG Canadell, DE Pataki, LF Pitelka) pp. 81–91 (Springer: Berlin, Heidelberg, Germany) 10.1007/978-3-540-32730-1_7
Díaz-Maeda PG (1991) Efectos dependientes de la densidad en una cactácea columnar (Neobuxbeumie tetetzo (Coulter) Backeberg) del valle de Zapotitlán de las Salinas, Puebla. Doctoral dissertation, Tesis licenciatura, Facultad De Ciencias, UNAM, México, DF. Available at https://tesiunamdocumentos.dgb.unam.mx/ptd2013/anteriores/0163733/0163733.pdf [In Spanish]
Drezner TD (2014) Regional branching relationships in Carnegiea gigantea, a keystone cactus. Western North American Naturalist 74(2), 155-161.
| Crossref | Google Scholar |
Drezner TD (2017) Shade, reproductive effort and growth of the endangered native cactus, Opuntia humifusa Raf. in Point Pelee National Park, Canada. The Journal of the Torrey Botanical Society 144(2), 179-190.
| Crossref | Google Scholar |
Esquivel-Muelbert A, Baker TR, Dexter KG, Lewis SL, Brienen RJ, Feldpausch TR, Lloyd J, Monteagudo-Mendoza A, Arroyo L, Álvarez-Dávila E, Higuchi N, Marimon B, Marimon-Junior B, Silveira M, et al. (2019) Compositional response of Amazon forests to climate change. Global Change Biology 25(1), 39-56.
| Crossref | Google Scholar | PubMed |
Falster DS, Westoby M (2003) Plant height and evolutionary games. Trends in Ecology & Evolution 18(7), 337-343.
| Crossref | Google Scholar |
Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology 15(5), 688-695.
| Crossref | Google Scholar |
Goettsch B, Hilton-Taylor C, Cruz-Piñón G, et al. (2015) High proportion of cactus species threatened with extinction. Nature Plants 1(10), 15142.
| Crossref | Google Scholar |
Guerrero PC, Majure LC, Cornejo-Romero A, Hernández-Hernández T (2019) Phylogenetic relationships and evolutionary trends in the cactus family. Journal of Heredity 110(1), 4-21.
| Crossref | Google Scholar | PubMed |
Hernández-Hernández T, Hernández H, De-Nova A, Puente R, Eguiarte L, Magallón S (2011) Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). American Journal of Botany 98(1), 44-61.
| Crossref | Google Scholar |
Huber J, Dettman DL, Williams DG, Hultine KR (2018) Gas exchange characteristics of giant cacti species varying in stem morphology and life history strategy. American Journal of Botany 105(10), 1688-1702.
| Crossref | Google Scholar | PubMed |
Hultine KR, Williams DG, Dettman DL, Butterfield BJ, Puente-Martinez R (2016) Stable isotope physiology of stem succulents across a broad range of volume-to-surface area ratio. Oecologia 182, 679-690.
| Crossref | Google Scholar | PubMed |
Kattge J, Diaz S, Lavorel S, et al. (2011) TRY – a global database of plant traits. Global Change Biology 17(9), 2905-2935.
| Crossref | Google Scholar |
Kuru A, Oldfield P, Bonser S, Fiorito F (2020) A framework to achieve multifunctionality in biomimetic adaptive building skins. Buildings 10(7), 114.
| Crossref | Google Scholar |
Lee SJ, Ha N, Kim H (2019) Superhydrophilic–superhydrophobic water harvester inspired by wetting property of cactus stem. ACS Sustainable Chemistry & Engineering 7(12), 10561-10569.
| Crossref | Google Scholar |
Leps J, de Bello F, Lavorel S, Berman S (2006) Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia 78(4), 481-501.
| Google Scholar |
Lin D, Lai J, Muller-Landau HC, Mi X, Ma K (2012) Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PLoS ONE 7(10), e48244.
| Crossref | Google Scholar | PubMed |
Linares-Palomino R, Huamantupa-Chuquimaco I, Padrón E, La Torre-Cuadros MDLÁ, Roncal-Rabanal M, Choquecota Castillo NM, Collazos Huamán JL, Elejalde Romero RE, Vergara Camarena N, Marcelo-Peña JL (2022) Los bosques estacionalmente secos del Perú: un re-análisis de sus patrones de diversidad y relaciones florísticas. Revista Peruana de Biología 29(4), e21613.
| Crossref | Google Scholar |
Marcelo-Peña JL, Huamantupa-Chuquimaco I, Särkinen T, Tomazello M (2016) Identifying conservation priority areas in the Marañón valley (Peru) based on floristic inventories. Edinburgh Journal of Botany 1(1), 1-29.
| Crossref | Google Scholar |
Matesanz S, Valladares F (2014) Ecological and evolutionary responses of Mediterranean plants to global change. Environmental and Experimental Botany 103, 53-67.
| Crossref | Google Scholar |
Mauseth JD (2000) Theoretical aspects of surface-to-volume ratios and water-storage capacities of succulent shoots. American Journal of Botany 87(8), 1107-1115.
| Crossref | Google Scholar | PubMed |
Mauseth JD (2017) An introduction to Cactus Areoles. Part I. Cactus and Succulent Journal 89(3), 128-134.
| Crossref | Google Scholar |
McAuliffe JR, Hendricks P (1988) Determinants of the vertical distributions of woodpecker nest cavities in the Sahuaro Cactus. The Condor 90(4), 791-801.
| Crossref | Google Scholar |
Medina-Villar S, Vázquez de Aldana BR, Herrero A, et al. (2022) The green thorns of Ulex europaeus play both defensive and photosynthetic roles: consequences for predictions of the enemy release hypothesis. Biol Invasions 24, 385-398.
| Crossref | Google Scholar |
Moonlight P, Banda K, Phillips OL, et al. (2020) ‘Manual DryFlor: protocolo para el establecimiento y monitoreo de parcelas de bosque seco.’ 1st edn. ForestPlots.net. Available at https://doi.org/10.5521/forestplots.net/2020_4b [In Spanish]
Nayelli Rivera Villanueva A, Quirino R (2020) Síndrome de quiropterofilia en cactus columnares. Desde El Herbario CICY 12, 149-153 Available at http://cicy.repositorioinstitucional.mx/jspui/handle/1003/2596 [In Spanish].
| Google Scholar |
Niklas KJ (1994) Interspecific allometries of critical buckling height and actual plant height. American Journal of Botany 81(10), 1275-1279.
| Crossref | Google Scholar |
Nock CA, Vogt RJ, Beisner BE (2016) Functional traits. In ‘Encyclopedia of Life Sciences (eLS)’. pp. 1–8. (John Wiley & Sons: Hoboken, NJ) 10.1002/9780470015902.a0026282
Nogueira EM, Nelson BW, Fearnside PM (2005) Wood density in dense forest in central Amazonia, Brazil. Forest Ecology and Management 208(1–3), 261-286.
| Crossref | Google Scholar |
Oldfield S, Hunt D (2010) The conservation of cacti and succulents in botanic gardens. BGjournal 7(1), 15-17 Available at https://www.jstor.org/stable/24811073.
| Google Scholar |
Orr TJ, Newsome SD, Wolf BO (2015) Cacti supply limited nutrients to a desert rodent community. Oecologia 178, 1045-1062.
| Crossref | Google Scholar | PubMed |
Ostolaza C (2014) ‘Todos los cactus del Perú.’ (Franco EIRL). Available at https://www.minam.gob.pe/diversidadbiologica/wpcontent/uploads/sites/21/2014/02/document.pdf[In Spanish]
Perea M (2005) Aspectos funcionales y biogeográficos en desiertos cálidos de América: Desierto Sonorense (México) y Desierto del Monte (Argentina). Tesis doctoral, Centro de Investigaciones Biológicas del Noreste, S.C. Available at https://cibnor.repositorioinstitucional.mx/jspui/bitstream/1001/1743/1/perea_m.pdf [In Spanish]
Pérez-Harguindeguy N, Díaz S, Garnier E, et al. (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61, 167-234.
| Crossref | Google Scholar |
Portelli AM, Windecker SM, Pollock LJ, Neal WC, Morris WK, Khot R, Vesk PA (2023) From mallees to mountain ash, specific leaf area is coordinated with eucalypt tree stature, resprouting, stem construction, and fruit size. Australian Journal of Botany 71, 506-522.
| Crossref | Google Scholar |
Prisa D (2022) Botany and uses of cacti. GSC Biological and Pharmaceutical Sciences 21(1), 287-297.
| Crossref | Google Scholar |
Salgado Negret B (2015) ‘La ecología funcional como aproximación al estudio, manejo y conservación de la biodiversidad: protocolos y aplicaciones.’ 1st edn. (Alexander Von Humboldt). Available at http://biblioteca.humboldt.org.co/es/boletines-y-comunicados/item/839-eco-funcional [In Spanish]
Schwager H, Neinhuis C, Mauseth JD (2015) Secondary growth of the leaf and bud traces in Hylocereus undatus (Cactaceae) during the formation of branches or flowers. International Journal of Plant Sciences 176, 762-769.
| Crossref | Google Scholar |
Schwertner-Charão L, Treviño-Carreón J, Delgado-Martínez R (2023) Las fascinantes adaptaciones de las cactáceas y su historia evolutiva. CIENCIA ergo-sum 30(2),.
| Crossref | Google Scholar |
Thomas PA (1991) Response of succulents to fire: a review. International Journal of Wildland Fire 1(1), 11-22.
| Crossref | Google Scholar |
Van Cleemput E, Roberts DA, Honnay O, Somers B (2019) A novel procedure for measuring functional traits of herbaceous species through field spectroscopy. Methods in Ecology and Evolution 10(8), 1332-1338.
| Crossref | Google Scholar |
Vargas-Silva G (2019) Biomecánica de los árboles: crecimiento, anatomía y morfología. Madera y Bosques 25(3), 1-18.
| Crossref | Google Scholar |
Vela Zevallos AW (2019) Rasgos funcionales asociados al servicio ecosistémico de mitigación del cambio climático en árboles de colinas altas del bosque reservado de la UNAS − Tingo María. Tesis de posgrado, Universidad Nacional Agraria de la Selva. Available at https://hdl.handle.net/20.500.14292/1722[In Spanish]
Wenk EH, Sauquet H, Gallagher RV, et al. (2024) The AusTraits plant dictionary. Scientific Data 11, 537.
| Crossref | Google Scholar | PubMed |
Williams DG, Hultine KR, Dettman DL (2014) Functional trade-offs in succulent stems predict responses to climate change in columnar cacti. Journal of Experimental Botany 65(13), 3405-3413.
| Crossref | Google Scholar | PubMed |
Wright I, Reich P, Westoby M, et al. (2004) The worldwide leaf economics spectrum. Nature 428, 821-827.
| Crossref | Google Scholar | PubMed |
Wright IJ, Reich PB, Cornelissen JHC, et al. (2005) Assessing the generality of global leaf trait relationships. New Phytologist 166(2), 485-496.
| Crossref | Google Scholar | PubMed |
Zavala-Hurtado JA, Díaz-Solís A (1995) Repair, growth, age and reproduction in the gigant columnar cactus Cephalocereus columna-trajani (Karwinski ex. Pfeiffer) Schumann (Cactaceae). Journal of Arid Environments 31, 21-31.
| Crossref | Google Scholar |