Stocktake Sale on now: wide range of books at up to 70% off!
Register      Login
Journal of Southern Hemisphere Earth Systems Science Journal of Southern Hemisphere Earth Systems Science SocietyJournal of Southern Hemisphere Earth Systems Science Society
A journal for meteorology, climate, oceanography, hydrology and space weather focused on the southern hemisphere
RESEARCH ARTICLE (Open Access)

Evaluation of near-surface atmospheric composition reanalysis data in the metropolis of São Paulo, Brazil

Marina S. Paiva A , Marco A. Franco B and Luciana V. Rizzo https://orcid.org/0000-0002-1748-6997 A *
+ Author Affiliations
- Author Affiliations

A Physics Institute, University of São Paulo, São Paulo, SP, Brazil.

B Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, São Paulo, SP, Brazil.

* Correspondence to: lrizzo@usp.br

Handling Editor: Chris Lucas

Journal of Southern Hemisphere Earth Systems Science 75, ES24041 https://doi.org/10.1071/ES24041
Submitted: 6 October 2024  Accepted: 14 April 2025  Published: 20 May 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing on behalf of the Bureau of Meteorology. This is an open access article distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND)

Abstract

Air quality monitoring stations are unequally distributed worldwide despite the relevance of the air pollution impacts. After validation, atmospheric composition reanalysis can fill information gaps in locations where air quality observations are absent. Reanalysis datasets are based on global emission inventories, often overlooking regional characteristics. This underscores the need for regional and local evaluation studies, which remain scarce in South America. This study presents the first evaluation of atmospheric composition reanalysis products in the Metropolitan Area of São Paulo (MASP), Brazil. Two reanalysis products were evaluated: MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications) and CAMS (Copernicus Atmospheric Monitoring Service). Four air pollutants were assessed, considering monthly concentration time series between 2015 and 2019: ozone (O3), nitrogen dioxide (NO2), inhalable (PM10) and fine particulate matter (PM2.5). Near-surface reanalysis was compared with air quality monitoring stations in the MASP. CAMS correctly reproduced the seasonal and interannual variability of concentrations, with significant Pearson correlation coefficients in the range of 0.75–0.89. However, CAMS overestimated O3, PM2.5 and PM10 by 136, 50 and 16% respectively. By contrast, MERRA-2 failed to reproduce the main features of air pollutant seasonal variability in the MASP, especially for PM2.5 and PM10. Based on these findings, we conclude that CAMS adequately represents near-surface air quality conditions in the MASP, although bias corrections are required. This means that the CAMS reanalysis data may be used to obtain information about air quality conditions in cities where local monitoring is absent, at least in Brazilian cities near the MASP. Further studies are necessary to investigate the adequacy of CAMS in other Brazilian regions.

Keywords: air pollution, air quality, Brazil, CAMS, data assimilation, global weather models, MERRA-2, ozone, particulate matter, São Paulo.

References

Albuquerque de Almeida V, Marton E, Nunes AMB (2018) Assessing the ability of three global reanalysis products to reproduce South American monsoon precipitation. Atmósfera 31(1), 1-10.
| Crossref | Google Scholar |

Ali MA, Bilal M, Wang Y, Nichol JE, Mhawish A, Qiu Z, de Leeuw G, Zhang Y, Zhan Y, Liao K, Almazroui M, Dambul R, Shahid S, Islam MN (2022) Accuracy assessment of CAMS and MERRA-2 reanalysis PM2.5 and PM10 concentrations over China. Atmospheric Environment 288, 119297.
| Crossref | Google Scholar |

Alvim DS, Gatti LV, Corrêa SM, Chiquetto JB, de Souza Rossatti C, Pretto A, Santos MH, Yamazaki A, Orlando JP, Santos GM (2017) Main ozone-forming VOCs in the city of Sao Paulo: observations, modelling and impacts. Air Quality, Atmosphere and Health 10(4), 421-435.
| Crossref | Google Scholar |

Brito J, Wurm F, Yáñez-Serrano AM, de Assunção JV, Godoy JM, Artaxo P (2015) Vehicular emission ratios of VOCs in a megacity impacted by extensive ethanol use: results of ambient measurements in São Paulo, Brazil. Environmental Science & Technology 49, 11381-11387.
| Crossref | Google Scholar | PubMed |

Brito J, Carbone S, A. Monteiro dos Santos D, Dominutti P, de Oliveira Alves N, V. Rizzo L, Artaxo P (2018) Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Scientific Reports 8(1), 10679.
| Crossref | Google Scholar | PubMed |

Buchard V, da Silva AM, Randles CA, Colarco P, Ferrare R, Hair J, Hostetler C, Tackett J, Winker D (2016) Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States. Atmospheric Environment 125, 100-111.
| Crossref | Google Scholar |

Buchard V, Randles CA, da Silva AM, Darmenov A, Colarco PR, Govindaraju R, Ferrare R, Hair J, Beyersdorf AJ, Ziemba LD, Yu H (2017) The MERRA-2 aerosol reanalysis, 1980 onward. Part II: evaluation and case studies. Journal of Climate 30(17), 6851-6872.
| Crossref | Google Scholar | PubMed |

Carvalho H (2016) The air we breathe: differentials in global air quality monitoring. The Lancet Respiratory Medicine 4(8), 603-605.
| Crossref | Google Scholar | PubMed |

Carvalho VSB, Freitas ED, Martins LD, Martins JA, Mazzoli CR, de Fátima Andrade M (2015) Air quality status and trends over the Metropolitan Area of São Paulo, Brazil as a result of emission control policies. Environmental Science & Policy 47, 68-79.
| Crossref | Google Scholar |

Casallas A, Castillo-Camacho MP, Guevara-Luna MA, González Y, Sanchez E, Belalcazar LC (2022) Spatio-temporal analysis of PM2.5 and policies in northwestern South America. Science of The Total Environment 852, 158504.
| Crossref | Google Scholar | PubMed |

Casallas A, Cabrera A, Guevara-Luna MA, Tompkins A, González Y, Aranda J, et al. (2024) Air pollution analysis in northwestern South America: a new Lagrangian framework. Science of The Total Environment 906, 167350.
| Crossref | Google Scholar | PubMed |

Casanueva A, Herrera S, Iturbide M, Lange S, Jury M, Dosio A, Maraun D, Gutiérrez JM (2020) Testing bias adjustment methods for regional climate change applications under observational uncertainty and resolution mismatch. Atmospheric Science Letters 21(7), e978.
| Crossref | Google Scholar |

Castanho ADA, Artaxo P (2001) Wintertime and summertime Sao Paulo aerosol source apportionment study. Atmospheric Environment 35, 4889-4902.
| Crossref | Google Scholar |

Castesana P, Diaz Resquin M, Huneeus N, Puliafito E, Darras S, Gómez D, Granier C, Osses Alvarado M, Rojas N, Dawidowski L (2022) PAPILA dataset: a regional emission inventory of reactive gases for South America based on the combination of local and global information. Earth System Science Data 14(1), 271-293.
| Crossref | Google Scholar |

Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH (2017) Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet 389(10082), 1907-1918.
| Crossref | Google Scholar | PubMed |

Companhia Ambiental do Estado de São Paulo (2016) Classificação expedita da representatividade espacial das estações de monitoramento da qualidade do ar da CETESB no Estado de São Paulo. (CETESB) Available at https://cetesb.sp.gov.br/ar/wp-content/uploads/sites/28/2013/12/Relat%C3%B3rio-Classifica%C3%A7%C3%A3o_Terceira-Etapa.pdf [In Portuguese]

Companhia Ambiental do Estado de São Paulo (2024) Qualidade do ar no estado de São Paulo 2023. (CETESB) Available at https://cetesb.sp.gov.br/ar/wp-content/uploads/sites/28/2024/08/Relatorio-de-Qualidade-do-Ar-no-Estado-de-Sao-Paulo-2023.pdf [In Portuguese]

Damascena AS, Yamasoe MA, Martins VS, Rosas J, Benavente NR, Sánchez MP, Tanaka NI, Saldiva PHN (2021) Exploring the relationship between high-resolution aerosol optical depth values and ground-level particulate matter concentrations in the Metropolitan Area of São Paulo. Atmospheric Environment 244(May 2020), 117949.
| Crossref | Google Scholar |

de Almeida Albuquerque TT, de Fátima Andrade M, Ynoue RY (2012) Characterization of atmospheric aerosols in the city of São Paulo, Brazil: comparisons between polluted and unpolluted periods. Environmental Monitoring and Assessment 184(2), 969-84.
| Crossref | Google Scholar | PubMed |

de Arruda Moreira G, da Silva Andrade I, Cacheffo A, da Silva Lopes FJ, Calzavara Yoshida A, Gomes AA, et al. (2021) Influence of a biomass-burning event in PM2.5 concentration and air quality: a case study in the metropolitan area of São Paulo. Sensors 21(2), 425.
| Crossref | Google Scholar | PubMed |

de Fatima Andrade M, Kumar P, de Freitas ED, Ynoue RY, Martins J, Martins LD, Nogueira T, Perez-Martinez P, de Miranda RM, Albuquerque T, Gonçalves FLT, Oyama B, Zhang Y (2017) Air quality in the megacity of São Paulo: evolution over the last 30 years and future perspectives. Atmospheric Environment 159, 66-82.
| Crossref | Google Scholar |

Dufek AS, Ambrizzi T, Da Rocha RP (2008) Are reanalysis data useful for calculating climate indices over South America? Annals of the New York Academy of Sciences 1146(1), 87-104.
| Crossref | Google Scholar | PubMed |

European Centre for Medium-Range Weather Forecasts (2024) ‘IFS Documentation CY49R1 – Part VIII: Atmospheric Composition.’ (ECMWF: Reading, UK) 10.21957/d13af18259

Garrigues S, Remy S, Chimot J, Ades M, Inness A, Flemming J, Kipling Z, Laszlo I, Benedetti A, Ribas R, Jafariserajehlou S, Fougnie B, Kondragunta S, Engelen R, Peuch V-H, Parrington M, Bousserez N, Vazquez Navarro M, Agusti-Panareda A (2022) Monitoring multiple satellite aerosol optical depth (AOD) products within the Copernicus Atmosphere Monitoring Service (CAMS) data assimilation system. Atmospheric Chemistry and Physics 22(22), 14657-14692.
| Crossref | Google Scholar |

Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L, Randles CA, Darmenov A, Bosilovich MG, Reichle R, Wargan K, Coy L, Cullather R, Draper C, Akella S, Buchard V, Conaty A, da Silva AM, Gu W, Kim GK, Koster R, Lucchesi R, Merkova D, Nielsen JE, Partyka G, Pawson S, Putman W, Rienecker M, Schubert SD, Sienkiewicz M, Zhao B (2017) The Modern-Era Retrospective Analysis for research and applications, version 2 (MERRA-2). Journal of Climate 30(14), 5419-5454.
| Crossref | Google Scholar | PubMed |

Global Modeling and Assimilation Office (2015a) MERRA-2 inst3_3d_chm_Nv: 3d, 3-hourly, instantaneous, model-level, assimilation, carbon monoxide and ozone mixing ratio V5.12.4. (Goddard Earth Sciences Data and Information Services Center: Greenbelt, MD, USA) 10.5067/HO9OVZWF3KW2

Global Modeling and Assimilation Office (2015b) MERRA-2 tavg1_2d_aer_Nx: 2d,1-hourly, time-averaged, single-level, assimilation, aerosol diagnostics V5.12.4. (Goddard Earth Sciences Data and Information Services Center: Greenbelt, MD, USA) 10.5067/KLICLTZ8EM9D

Goldberg DL, Anenberg SC, Kerr GH, Mohegh A, Lu Z, Streets DG (2021) TROPOMI NO2 in the United States: a detailed look at the annual averages, weekly cycles, effects of temperature, and correlation with surface NO2 concentrations. Earth’s Future 9(4), e2020EF001665.
| Crossref | Google Scholar | PubMed |

Granier C, Bessagnet B, Bond T, D’Angiola A, Denier van der Gon H, Frost GJ, Heil A, Kaiser JW, Kinne S, Klimont Z, Kloster S, Lamarque J-F, Liousse C, Masui T, Meleux F, Mieville A, Ohara T, Raut J-C, Riahi K, Schultz MG, Smith SJ, Thompson A, van Aardenne J, van der Werf GR, van Vuuren DP (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change 109(1–2), 163-190.
| Crossref | Google Scholar |

Inness A, Ades M, Agustí-Panareda A, Barré J, Benedictow A, Blechschmidt A-M, Dominguez JJ, Engelen R, Eskes H, Flemming J, Huijnen V, Jones L, Kipling Z, Massart S, Parrington M, Peuch V-H, Razinger M, Remy S, Schulz M, Suttie M (2019) The CAMS reanalysis of atmospheric composition. Atmospheric Chemistry and Physics 19(6), 3515-3556.
| Crossref | Google Scholar |

Instituto Brasileiro de Geografia e Estatística (2023) Cidades e Estados do Brasil: Brasil / São Paulo / São Paulo. (IBGE) Available at https://cidades.ibge.gov.br/brasil/sp/sao-paulo/panorama [In Portuguese, verified 13 May 2025]

Jin C, Wang Y, Li T, Yuan Q (2022) Global validation and hybrid calibration of CAMS and MERRA-2 PM2.5 reanalysis products based on OpenAQ platform. Atmospheric Environment 274, 118972.
| Crossref | Google Scholar |

Júnior ALP, Curado LFA, Palácios RdS, dos Santos LOF, Querino CAS, Querino JKAdS, et al. (2025) Evaluation of Aerosol Optical Depth (AOD) estimated by Copernicus Atmosphere Monitoring Service (CAMS) in Brazil. Theoretical and Applied Climatology 156(2), 116.
| Crossref | Google Scholar |

Lacima A, Petetin H, Soret A, Bowdalo D, Jorba O, Chen Z, et al. (2022) Long-term evaluation of surface air pollution in CAMSRA and MERRA-2 global reanalysis over Europe (2003–2020). Geoscientific Model Development Discussions 16, 2689-2718.
| Crossref | Google Scholar |

Lahoz WA, Schneider P (2014) Data assimilation: making sense of Earth Observation. Frontiers in Environmental Science 2, 16.
| Crossref | Google Scholar |

Li J, Wang T, Li C, Yan H, Alam K, Cui Y, et al. (2024) Can the aerosol pollution extreme events be revealed by global reanalysis products? Science of The Total Environment 923, 171424.
| Crossref | Google Scholar | PubMed |

Molina LT (2021) Introductory lecture: air quality in megacities. Faraday Discussions 226, 9-52.
| Crossref | Google Scholar |

Oliveira MCQD, Drumond A, Rizzo LV (2022) Air pollution persistent exceedance events in the Brazilian metropolis of Sao Paulo and associated surface weather patterns. International Journal of Environmental Science and Technology 19(10), 9495-9506.
| Crossref | Google Scholar |

Paton-Walsh C, Emmerson KM, Garland RM, Keywood M, Hoelzemann JJ, Huneeus N, Buchholz RR, Humphries RS, Altieri K, Schmale J, Wilson SR, Labuschagne C, Kalisa E, Fisher JA, Deutscher NM, van Zyl PG, Beukes JP, Joubert W, Martin L, Mkololo T, Barbosa C, de Fatima Andrade M, Schofield R, Mallet MD, Harvey MJ, Formenti P, Piketh SJ, Olivares G (2022) ‘Key challenges for tropospheric chemistry in the Southern Hemisphere, Elementa.’ (University of California Press) 10.1525/elementa.2021.00050

Randles CA, da Silva AM, Buchard V, Colarco PR, Darmenov A, Govindaraju R, Smirnov A, Holben B, Ferrare R, Hair J, Shinozuka Y, Flynn CJ (2017) The MERRA-2 Aerosol Reanalysis, 1980 onward. Part I: system description and data assimilation evaluation. Journal of Climate 30(17), 6823-6850.
| Crossref | Google Scholar | PubMed |

Ranjan AK, Patra AK, Gorai AK (2021) A review on estimation of particulate matter from satellite-based aerosol optical depth: data, methods, and challenges. Asia-Pacific Journal of Atmospheric Sciences 57(3), 679-699.
| Crossref | Google Scholar |

Salvo A, Geiger FM (2014) Reduction in local ozone levels in urban São Paulo due to a shift from ethanol to gasoline use. Nature Geoscience 7, 450-458.
| Crossref | Google Scholar |

Santos DM, Rizzo LV, Carbone S, Schlag P, Artaxo P (2021) Physical and chemical properties of urban aerosols in São Paulo, Brazil: Links between composition and size distribution of submicron particles. Atmospheric Chemistry and Physics 21, 8761-8773.
| Crossref | Google Scholar |

Schuch D, de Freitas ED, Espinosa SI, Martins LD, Carvalho VSB, Ramin BF, Silva JS, Martins JA, de Fatima Andrade M (2019) A two decades study on ozone variability and trend over the main urban areas of the São Paulo state, Brazil. Environmental Science and Pollution Research 26(31), 31699-31716.
| Crossref | Google Scholar |

Silva FB, Longo KM, de Andrade FM (2017) Spatial and temporal variability patterns of the urban heat island in São Paulo. Environments 4(2), 27.
| Crossref | Google Scholar |

Souto-Oliveira CE, Marques MT, Nogueira T, Lopes FJ, Medeiros JA, Medeiros IM, et al. (2023) Impact of extreme wildfires from the Brazilian Forests and sugarcane burning on the air quality of the biggest megacity in South America. Science of The Total Environment 888, 163439.
| Crossref | Google Scholar | PubMed |

Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres 106(D7), 7183-7192.
| Crossref | Google Scholar |

Vara-Vela A, Andrade MF, Kumar P, Ynoue RY, Muñoz AG (2016) Impact of vehicular emissions on the formation of fine particles in the Sao Paulo Metropolitan Area: a numerical study with the WRF-Chem model. Atmospheric Chemistry and Physics 16, 777-797.
| Crossref | Google Scholar |

Vieira EVR, do Rosario NE, Yamasoe MA, Morais FG, Martinez PJP, Landulfo E, Maura de Miranda R (2023) Chemical characterization and optical properties of the aerosol in São Paulo, Brazil. Atmosphere 14(9), 1460.
| Crossref | Google Scholar |

Vormittag EdMPAdA, Cirqueira SSR, Wicher Neto H, Saldiva PHN (2021) Análise do monitoramento da qualidade do ar no Brasil. Estudos Avançados 35(102), 7-30.
| Crossref | Google Scholar |

Wagner A, Bennouna Y, Blechschmidt A-M, Brasseur G, Chabrillat S, Christophe Y, Errera Q, Eskes H, Flemming J, Hansen KM, Inness A, Kapsomenakis J, Langerock B, Richter A, Sudarchikova N, Thouret V, Zerefos C (2021) Comprehensive evaluation of the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis against independent observations. Elementa: Science of the Anthropocene 9(1), 00171.
| Crossref | Google Scholar |

Wang Y, Ma YF, Eskes H, Inness A, Flemming J, Brasseur GP (2020) Evaluation of the CAMS global atmospheric trace gas reanalysis 2003–2016 using aircraft campaign observations. Atmospheric Chemistry and Physics 20(7), 4493-4521.
| Crossref | Google Scholar |

Wargan K, Labow G, Frith S, Pawson S, Livesey N, Partyka G (2017) Evaluation of the ozone fields in NASA’s MERRA-2 reanalysis. Journal of Climate 30(8), 2961-2988.
| Crossref | Google Scholar | PubMed |

Yamasoe MA, do Rosário NME, Barros KM (2017) Downward solar global irradiance at the surface in São Paulo city – the climatological effects of aerosol and clouds. Journal of Geophysical Research 122(1), 391-404.
| Crossref | Google Scholar |