Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Performance of acoustic telemetry in relation to submerged aquatic vegetation in a nearshore freshwater habitat

Amy A. Weinz A , Jordan K. Matley A , Natalie V. Klinard A B , Aaron T. Fisk A and Scott F. Colborne https://orcid.org/0000-0002-0143-8456 C D
+ Author Affiliations
- Author Affiliations

A Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada.

B Present address: Department of Biology, Dalhousie University, Halifax, NS, Canada.

C Daniel P. Haerther Center for Conservation and Research, Shedd Aquarium, Chicago, IL 60605, USA. Current address: Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA 95616, USA.

D Corresponding author. Email: scolbor@gmail.com

Marine and Freshwater Research 72(7) 1033-1044 https://doi.org/10.1071/MF20245
Submitted: 11 August 2020  Accepted: 22 December 2020   Published: 3 February 2021

Abstract

Acoustic telemetry is a powerful tool for learning about the movements and ecology of aquatic animals, but proper use requires evaluation of its performance in different environments. Nearshore freshwater habitats are important to many fishes; however, submerged aquatic vegetation (SAV) in these areas influences the performance of acoustic telemetry through attenuation of the transmissions. Despite this, few studies have quantified the influence of SAV on the detection efficiency and range. We conducted range testing and hydroacoustic surveys to assess the seasonal influence of SAV biovolume on the detection efficiency of 180 kHz transmitters in the nearshore (<1.5 m) habitats of a temperate freshwater riverine ecosystem. The interaction of transmitter–receiver distance and SAV biovolume significantly reduced the detection efficiency of transmitters, which varied with seasonal growth and senescence of SAV. Daily effective detection range (mean ± s.e.) varied from 6.85 m ± 1.98 when SAV coverage was high (mean biovolume 0.98) to 196.08 m ± 51.89 when SAV was largely absent (mean biovolume 0.01). This study demonstrated the impact of SAV on the detection range of acoustic transmitters, illustrating the need for range testing and consideration in study design and analysis to improve the quality of interpretation of data in vegetated habitats.

Keywords: biotelemetry, detection probability, macrophytes, Laurentian Great Lakes, passive monitoring, littoral.


References

Barko, J. W., Hardin, D. G., and Matthews, M. S. (1982). Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Canadian Journal of Botany 60, 877–887.
Growth and morphology of submersed freshwater macrophytes in relation to light and temperature.Crossref | GoogleScholarGoogle Scholar |

Barton, K. (2020). MuMIn: Multi-model inference (R package version 1.43.17). Available at https://cran.r-project.org/package=MuMIn

Bivand, R. S., Pebesma, E., and Gomez-Rubio, V. (2013). ‘Applied Spatial Data Analysis with {R}.’ 2nd edn. (Springer: New York, NY, USA.)

Brooks, J. L., Midwood, J. D., Gutowsky, L. F. G., Boston, C. M., Doka, S. E., Hoyle, J. A., and Cooke, S. J. (2019). Spatial ecology of reintroduced walleye (Sander vitreus) in Hamilton Harbour of Lake Ontario. Journal of Great Lakes Research 45, 167–175.
Spatial ecology of reintroduced walleye (Sander vitreus) in Hamilton Harbour of Lake Ontario.Crossref | GoogleScholarGoogle Scholar |

Brownscombe, J. W., Griffin, L. P., Chapman, J. M., Morley, D., Acosta, A., Crossin, G. T., Iverson, S. J., Adams, A. J., Cooke, S. J., and Danylchuk, A. J. (2020). A practical method to account for variation in detection range in acoustic telemetry arrays to accurately quantify the spatial ecology of aquatic animals. Methods in Ecology and Evolution 11, 82–94.
A practical method to account for variation in detection range in acoustic telemetry arrays to accurately quantify the spatial ecology of aquatic animals.Crossref | GoogleScholarGoogle Scholar |

Cagua, E. F., Berumen, M. L., and Tyler, E. H. M. (2013). Topography and biological noise determine acoustic detectability on coral reefs. Coral Reefs 32, 1123–1134.
Topography and biological noise determine acoustic detectability on coral reefs.Crossref | GoogleScholarGoogle Scholar |

Carol, J., Zamora, L., and García-Berthou, E. (2007). Preliminary telemetry data on the movement patterns and habitat use of European catfish (Silurus glanis) in a reservoir of the River Ebro, Spain. Ecology of Freshwater Fish 16, 450–456.
Preliminary telemetry data on the movement patterns and habitat use of European catfish (Silurus glanis) in a reservoir of the River Ebro, Spain.Crossref | GoogleScholarGoogle Scholar |

Clements, S., Jepsen, D., Karnowski, M., and Schreck, C. B. (2005). Optimization of an acoustic telemetry array for detecting transmitter-implanted fish. North American Journal of Fisheries Management 25, 429–436.
Optimization of an acoustic telemetry array for detecting transmitter-implanted fish.Crossref | GoogleScholarGoogle Scholar |

Dance, M. A., Moulton, D. L., Furey, N. B., and Rooker, J. R. (2016). Does transmitter placement or species affect detection efficiency of tagged animals in biotelemetry research? Fisheries Research 183, 80–85.
Does transmitter placement or species affect detection efficiency of tagged animals in biotelemetry research?Crossref | GoogleScholarGoogle Scholar |

Edwards, C. J., Hudson, P. L., Duffy, W. G., Nepszy, S. J., McNabb, C. D., Liston, C. R., Manny, B. A., and Busch, W. N. (1989). Hydrological, morphometrical, and biological characteristics of the connecting rivers of the international Great Lakes: a review. In ‘Proceedings of the International Large River Symposium’. (Ed. D. P. Dodge.) pp. 240–264. (Canadian Special Publication of Fisheries and Aquatic Sciences 106: Ottawa, Canada.)

Espinoza, M., Farrugia, T. J., Webber, D. M., Smith, F., and Lowe, C. G. (2011). Testing a new acoustic telemetry technique to quantify long-term, fine-scale movements of aquatic animals. Fisheries Research 108, 364–371.
Testing a new acoustic telemetry technique to quantify long-term, fine-scale movements of aquatic animals.Crossref | GoogleScholarGoogle Scholar |

Fox, J., and Weisberg, S. (2011). ‘An {R} companion to applied regression.’ 2nd edn. (Sage: CA, USA.) http://socserv.socsci.mcmaster.ca/jfox/Books/Companion

Francis, J. T., Chiotti, J. A., Boase, J. C., Thomas, M. V., Manny, B. A., and Roseman, E. F. (2014). A description of the nearshore fish communities in the Huron–Erie corridor using multiple gear types. Journal of Great Lakes Research 40, 52–61.
A description of the nearshore fish communities in the Huron–Erie corridor using multiple gear types.Crossref | GoogleScholarGoogle Scholar |

Fritz, C., Dörnhöfer, K., Schneider, T., Geist, J., and Oppelt, N. (2017). Mapping submerged aquatic vegetation using RapidEye satellite data: the example of Lake Kummerow (Germany). Water 9, 510.
Mapping submerged aquatic vegetation using RapidEye satellite data: the example of Lake Kummerow (Germany).Crossref | GoogleScholarGoogle Scholar |

Gjelland, K. O., and Hedger, R. D. (2013). Environmental influence on transmitter detection probability in biotelemetry: developing a general model of acoustic transmission. Methods in Ecology and Evolution 4, 665–674.
Environmental influence on transmitter detection probability in biotelemetry: developing a general model of acoustic transmission.Crossref | GoogleScholarGoogle Scholar |

Havn, T. B., Økland, F., Teichert, M. A. K., Heermann, L., Borcherding, J., Sæther, S. A., Tambets, M., Diserud, O. H., and Thorstad, E. B. (2017). Movements of dead fish in rivers. Animal Biotelemetry 5, 7.
Movements of dead fish in rivers.Crossref | GoogleScholarGoogle Scholar |

Helminen, J., Linnansaari, T., Bruce, M., Dolson-Edge, R., and Curry, R. A. (2019). Accuracy and precision of low-cost echosounder and automated data processing software for habitat mapping in a large river. Diversity 11, 116.
Accuracy and precision of low-cost echosounder and automated data processing software for habitat mapping in a large river.Crossref | GoogleScholarGoogle Scholar |

Heupel, M. R., Semmens, J. M., and Hobday, A. J. (2006). Automated acoustic tracking of aquatic animals: scales, design and deployment of listening station arrays. Marine and Freshwater Research 57, 1–13.
Automated acoustic tracking of aquatic animals: scales, design and deployment of listening station arrays.Crossref | GoogleScholarGoogle Scholar |

Higgins, S. N., Hecky, R. E., and Guildford, S. J. (2006). Environmental controls of Cladophora growth dynamics in eastern Lake Erie: application of the Cladophora growth model (CGM). Journal of Great Lakes Research 32, 629–644.
Environmental controls of Cladophora growth dynamics in eastern Lake Erie: application of the Cladophora growth model (CGM).Crossref | GoogleScholarGoogle Scholar |

Hightower, J. E., Jackson, J. R., and Pollock, K. H. (2001). Use of telemetry methods to estimate natural and fishing mortality of striped bass in Lake Gaston, North Carolina. Transactions of the American Fisheries Society 130, 557–567.
Use of telemetry methods to estimate natural and fishing mortality of striped bass in Lake Gaston, North Carolina.Crossref | GoogleScholarGoogle Scholar |

Hijmans, R. J. (2019). raster: geographic data analysis and modeling (R package version 3.0-7). Available at https://cran.r-project.org/package=raster

How, J. R., and de Lestang, S. (2012). Acoustic tracking: issues affecting design, analysis and interpretation of data from movement studies. Marine and Freshwater Research 63, 312–324.
Acoustic tracking: issues affecting design, analysis and interpretation of data from movement studies.Crossref | GoogleScholarGoogle Scholar |

Hussey, N. E., Kessel, S. T., Aaeestrup, K., Cooke, S. J., Cowley, P. D., Fisk, A. T., Harcourt, R. G., Holland, K. N., Iverson, S. J., Kocik, J. F., Mills Flemming, J. E., and Whoriskey, F. G. (2015). Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642.
Aquatic animal telemetry: a panoramic window into the underwater world.Crossref | GoogleScholarGoogle Scholar | 26068859PubMed |

Huveneers, C., Simpfendorfer, C. A., Kim, S., Semmens, J. M., Hobday, A. J., Pederson, H., Stieglitz, T., Vallee, R., Webber, D., Heupel, M. R., Peddemors, V., and Harcourt, R. G. (2016). The influence of environmental parameters on the performance and detection range of acoustic receivers. Methods in Ecology and Evolution 7, 825–835.
The influence of environmental parameters on the performance and detection range of acoustic receivers.Crossref | GoogleScholarGoogle Scholar |

Kessel, S. T., Cooke, S. J., Heupel, M. R., Hussey, N. E., Simpfendorfer, C. A., Vagle, S., and Fisk, A. T. (2014). A review of detection range testing in aquatic passive acoustic telemetry studies. Reviews in Fish Biology and Fisheries 24, 199–218.
A review of detection range testing in aquatic passive acoustic telemetry studies.Crossref | GoogleScholarGoogle Scholar |

Kessel, S. T., Hussey, N. E., Webber, D. M., Gruber, S. H., Young, J. M., Smale, J. S., and Fisk, A. T. (2015). Close proximity detection interference with acoustic telemetry: the importance of considering tag power output in low ambient noise environments. Animal Biotelemetry 3, 5.
Close proximity detection interference with acoustic telemetry: the importance of considering tag power output in low ambient noise environments.Crossref | GoogleScholarGoogle Scholar |

Klinard, N. V., Halfyard, E. A., Matley, J. K., Fisk, A. T., and Johnson, T. B. (2019). The influence of dynamic environmental interactions on detection efficiency of acoustic transmitters in a large, deep, freshwater lake. Animal Biotelemetry 7, 17.
The influence of dynamic environmental interactions on detection efficiency of acoustic transmitters in a large, deep, freshwater lake.Crossref | GoogleScholarGoogle Scholar |

Lapointe, N. W. R., Corkum, L. D., and Mandrak, N. E. (2010). Macrohabitat associations of fishes in shallow waters of the Detroit River. Journal of Fish Biology 76, 446–466.
Macrohabitat associations of fishes in shallow waters of the Detroit River.Crossref | GoogleScholarGoogle Scholar |

Lee, K. M., Ballard, M. S., Venegas, G. R., Sagers, J. D., and McNeese, A. R. (2019). Broadband sound propagation in a seagrass meadow throughout a diurnal cycle. The Journal of the Acoustical Society of America 146, EL335–EL341.
Broadband sound propagation in a seagrass meadow throughout a diurnal cycle.Crossref | GoogleScholarGoogle Scholar | 31671955PubMed |

Lirman, D., Deangelo, G., Serafy, J., Hazra, A., Smith Hazra, D., Herlan, J., Luo, J., Bellmund, S., Wang, J., and Clausing, R. (2008). Seasonal changes in the abundance and distribution of submerged aquatic vegetation in a highly managed coastal lagoon. Hydrobiologia 596, 105–120.
Seasonal changes in the abundance and distribution of submerged aquatic vegetation in a highly managed coastal lagoon.Crossref | GoogleScholarGoogle Scholar |

Melnychuk, M. C. (2012). Detection efficiency in telemetry studies: definitions and evaluation methods. In ‘Telemetry Techniques: A User Guide for Fisheries Research’. (Eds N. S. Adams, J. W. Beeman and J. W. Eiler.) pp. 339–357. (American Fisheries Society: Bethesda, MD, USA.)

Payne, N. L., Gillanders, B. M., Webber, D. M., and Semmens, J. M. (2010). Interpreting diel activity patterns from acoustic telemetry: the need for controls. Marine Ecology Progress Series 419, 295–301.
Interpreting diel activity patterns from acoustic telemetry: the need for controls.Crossref | GoogleScholarGoogle Scholar |

Pebesma, E. J., and Bivand, R. S. (2005). Classes and methods for spatial data in {R}. R News 5(2). Available at https://cran.r-project.org/doc/Rnews/.

R Core Team (2019). R: a language and environment for statistical computing. (R Foundation for Statistical Computing: Vienna, Austria.) Available at https://www.r-project.org/

Scott, M. E., Heupel, M. R., Simpfendorfer, C. A., Matley, J. K., and Pratchett, M. S. (2019). Latitudinal and seasonal variation in space use by a large, predatory reef fish, Plectropomus leopardus. Functional Ecology 33, 670–680.
Latitudinal and seasonal variation in space use by a large, predatory reef fish, Plectropomus leopardus.Crossref | GoogleScholarGoogle Scholar |

Selby, T. H., Hart, K. M., Fujisaki, I., Smith, B. J., Pollock, C. J., Hillis-Star, Z., Lundgren, I., and Oli, M. K. (2016). Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat. Ecology and Evolution 6, 4823–4835.
Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat.Crossref | GoogleScholarGoogle Scholar | 27547316PubMed |

Simpfendorfer, C. A., Heupel, M. R., and Hueter, R. E. (2002). Estimation of short-term centers of activity from an array of omnidirectional hydrophones and its use in studying animal movements. Canadian Journal of Fisheries and Aquatic Sciences 59, 23–32.
Estimation of short-term centers of activity from an array of omnidirectional hydrophones and its use in studying animal movements.Crossref | GoogleScholarGoogle Scholar |

Simpfendorfer, C. A., Heupel, M. R., and Collins, A. B. (2008). Variation in the performance of acoustic receivers and its implication for positioning algorithms in a riverine setting. Canadian Journal of Fisheries and Aquatic Sciences 65, 482–492.
Variation in the performance of acoustic receivers and its implication for positioning algorithms in a riverine setting.Crossref | GoogleScholarGoogle Scholar |

Swadling, D. S., Knott, N. A., Rees, M. J., Pederson, H., Adams, K. R., Taylor, M. D., and Davis, A. R. (2020). Seagrass canopies and the performance of acoustic telemetry: implications for the interpretation of fish movements. Animal Biotelemetry 8, 8.
Seagrass canopies and the performance of acoustic telemetry: implications for the interpretation of fish movements.Crossref | GoogleScholarGoogle Scholar |

Trebitz, A. S., and Hoffman, J. C. (2015). Coastal wetland support of Great Lakes fisheries: progress from concept to quantification. Transactions of the American Fisheries Society 144, 352–372.
Coastal wetland support of Great Lakes fisheries: progress from concept to quantification.Crossref | GoogleScholarGoogle Scholar |

Udyawer, V., Dwyer, R. G., Hoenner, X., Babcock, R. C., Brodie, S., Campbell, H. A., Harcourt, R. G., Huveneers, C., Jaine, F. R. A., Simpfendorfer, C. A., Taylor, M. D., and Heupel, M. R. (2018). A standardised framework for analysing animal detections from automated tracking arrays. Animal Biotelemetry 6, 17.
A standardised framework for analysing animal detections from automated tracking arrays.Crossref | GoogleScholarGoogle Scholar |

Vadeboncoeur, Y., McIntyre, P. B., and Vander Zanden, M. J. (2011). Borders of biodiversity: life at the edge of the world’s large lakes. Bioscience 61, 526–537.
Borders of biodiversity: life at the edge of the world’s large lakes.Crossref | GoogleScholarGoogle Scholar |

Venables, W. N., and Ripley, B. D. (2002). ‘Modern Applied Statistics with S.’ 4th edn. (Springer: New York, NY, USA.)

Voegeli, F. A., and Pincock, D. G. (1996). Overview of underwater acoustics as it applies to telemetry. In ‘Underwater Biotelemetry’. (Eds E. Baras and J. C. Philippart.) pp. 22–30. (University of Liege: Liege, Belgium.)

Voegeli, F. A., Lacroix, G. L., and Anderson, J. M. (1998). Development of miniature pingers for tracking Atlantic salmon smolts at sea. Hydrobiologia 371, 35–46.
Development of miniature pingers for tracking Atlantic salmon smolts at sea.Crossref | GoogleScholarGoogle Scholar |

Welsh, J. Q., Fox, R. J., Webber, D. M., and Bellwood, D. R. (2012). Performance of remote acoustic receivers within a coral reef habitat: implications for array design. Coral Reefs 31, 693–702.
Performance of remote acoustic receivers within a coral reef habitat: implications for array design.Crossref | GoogleScholarGoogle Scholar |

Winter, J. (1996). Advances in underwater biotelemetry. In ‘Fisheries Techniques’. (Eds B. R. Murphy and D. W. Willis.) pp. 555–590. (American Fisheries Society: Bethesda, MD, USA.)

Zeller, D. C. (1997). Home range and activity patterns of the coral trout Plectropomus leopardus (Serranidae). Marine Ecology Progress Series 154, 65–77.
Home range and activity patterns of the coral trout Plectropomus leopardus (Serranidae).Crossref | GoogleScholarGoogle Scholar |