Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Tapeworm discovery in elasmobranch fishes: quantifying patterns and identifying their correlates

Haseeb S. Randhawa A B C E and Robert Poulin D
+ Author Affiliations
- Author Affiliations

A Directorate of Natural Resources, Fisheries Department, Falkland Islands Government, Bypass Road, Stanley, FIQQ 1ZZ, Falkland Islands.

B South Atlantic Environmental Research Institute, Stanley Cottage, Stanley, FIQQ 1ZZ, Falkland Islands.

C New Brunswick Museum, 277 Douglas Avenue, Saint John, NB, E2K 1E5, Canada.

D Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.

E Corresponding author. Email: hrandhawa@fisheries.gov.fk

Marine and Freshwater Research 71(1) 78-88 https://doi.org/10.1071/MF18418
Submitted: 31 October 2018  Accepted: 22 December 2018   Published: 22 February 2019

Abstract

Most parasites from known host species are yet to be discovered and described, let alone those from host species not yet known to science. Here, we use tapeworms of elasmobranchs to identify factors influencing their discovery and explaining the time lag between the descriptions of elasmobranch hosts and their respective tapeworm parasites. The dataset included 918 tapeworm species from 290 elasmobranch species. Data were analysed using linear mixed-effects models. Our findings indicated that we are currently in the midst of the greatest rate of discovery for tapeworms exploiting elasmobranchs. We identified tapeworm size, year of discovery of the type host, host latitudinal range and type locality of the parasite influencing most on the probability of discovery of tapeworms from elasmobranchs and the average time lag between descriptions of elasmobranchs and their tapeworms. The time lag between descriptions is decreasing progressively, but, at current rates and number of taxonomic experts, it will take two centuries to clear the backlog of undescribed tapeworms from known elasmobranch species. Given that the number of new elasmobranch species described each year is on the rise, we need to re-assess funding strategies to save elasmobranchs (and, thus, their tapeworm parasites) before they go extinct.

Additional keywords: cestodes, linear mixed-effects model, rays, sharks, skates, taxonomic effort, taxonomy, year of description.


References

Allsopp, P. G. (1997). Probability of describing an Australian scarab beetle: influence of body size and distribution. Journal of Biogeography 24, 717–724.
Probability of describing an Australian scarab beetle: influence of body size and distribution.Crossref | GoogleScholarGoogle Scholar |

Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., Bamber, R., Barber, A., Bartsch, I., Berta, A., Błażewicz-Paszkowycz, M., Bock, P., Boxshall, G., Boyko, C. B., Brandão, S. N., Bray, R. A., Bruce, N. L., Cairns, S. D., Chan, T. Y., Cheng, L., Collins, A. G., Cribb, T., Curini-Galletti, M., Dahdouh-Guebas, F., Davie, P. J., Dawson, M. N., De Clerck, O., Decock, W., De Grave, S., de Voogd, N. J., Domning, D. P., Emig, C. C., Erséus, C., Eschmeyer, W., Fauchald, K., Fautin, D. G., Feist, S. W., Fransen, C. H., Furuya, H., Garcia-Alvarez, O., Gerken, S., Gibson, D., Gittenberger, A., Gofas, S., Gómez-Daglio, L., Gordon, D. P., Guiry, M. D., Hernandez, F., Hoeksema, B. W., Hopcroft, R. R., Jaume, D., Kirk, P., Koedam, N., Koenemann, S., Kolb, J. B., Kristensen, R. M., Kroh, A., Lambert, G., Lazarus, D. B., Lemaitre, R., Longshaw, M., Lowry, J., Macpherson, E., Madin, L. P., Mah, C., Mapstone, G., McLaughlin, P. A., Mees, J., Meland, K., Messing, C. G., Mills, C. E., Molodtsova, T. N., Mooi, R., Neuhaus, B., Ng, P. K., Nielsen, C., Norenburg, J., Opresko, D. M., Osawa, M., Paulay, G., Perrin, W., Pilger, J. F., Poore, G. C., Pugh, P., Read, G. B., Reimer, J. D., Rius, M., Rocha, R. M., Saiz-Salinas, J. I., Scarabino, V., Schierwater, B., Schmidt-Rhaesa, A., Schnabel, K. E., Schotte, M., Schuchert, P., Schwabe, E., Segers, H., Self-Sullivan, C., Shenkar, N., Siegel, V., Sterrer, W., Stöhr, S., Swalla, B., Tasker, M. L., Thuesen, E. V., Timm, T., Todaro, M. A., Turon, X., Tyler, S., Uetz, P., van der Land, J., Vanhoorne, B., van Ofwegen, L. P., van Soest, R. W., Vanaverbeke, J., Walker-Smith, G., Walter, T. C., Warren, A., Williams, G. C., Wilson, S. P., and Costello, M. J. (2012). The magnitude of global marine species diversity. Current Biology 22, 2189–2202.
The magnitude of global marine species diversity.Crossref | GoogleScholarGoogle Scholar | 23159596PubMed |

Baselga, A., Lobo, J. M., Hortal, J., Jimenez-Valverde, A., and Gomez, J. F. (2010). Assessing alpha and beta taxonomy in eupelmid wasps: determinants of the probability of describing good species and synonyms. Journal of Zoological Systematics and Evolutionary Research 48, 40–49.
Assessing alpha and beta taxonomy in eupelmid wasps: determinants of the probability of describing good species and synonyms.Crossref | GoogleScholarGoogle Scholar |

Beveridge, I., Haseli, M., Ivanov, V. A., Menoret, A., and Schaeffner, B. C. (2017). Trypanorhyncha. In ‘Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth’. (Eds J. N. Caira and K. Jensen.) pp. 401–430. (Natural History Museum, University of Kansas: Lawrence, KS, USA.)

Blackburn, T. M., and Gaston, K. J. (1995). What determines the probability of discovering a species? A study of South American oscine passerine birds. Journal of Biogeography 22, 7–14.
What determines the probability of discovering a species? A study of South American oscine passerine birds.Crossref | GoogleScholarGoogle Scholar |

Blasco-Costa, I., and Poulin, R. (2017). Parasite life-cycle studies: a plea to resurrect an old parasitological tradition. Journal of Helminthology 91, 647–656.
Parasite life-cycle studies: a plea to resurrect an old parasitological tradition.Crossref | GoogleScholarGoogle Scholar | 28166844PubMed |

Brooks, D. R., and Hoberg, E. P. (2000). Triage for the biosphere: the need and rationale for taxonomic inventories and phylogenetic studies of parasites. Comparative Parasitology 67, 1–25.

Brooks, D. R., and Hoberg, E. P. (2001). Parasite systematics in the 21st century: opportunities and obstacles. Trends in Parasitology 17, 273–275.
Parasite systematics in the 21st century: opportunities and obstacles.Crossref | GoogleScholarGoogle Scholar | 11378033PubMed |

Caira, J. N., and Healy, C. J. (2004). Elasmobranchs as hosts of metazoan parasites. In ‘Biology of Sharks and their Relatives’. (Eds J. C. Carrier, J. A. Musick, and M. R. Heithaus.) pp. 523–551. (CRC Press: Boca Raton, FL, USA.)

Caira, J. N., and Jensen, K. (Eds) (2017). ‘Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth’. (Natural History Museum, University of Kansas: Lawrence, KS, USA.)

Caira, J. N., and Reyda, F. (2005). Eucestoda (true tapeworms). In ‘Marine Parasitology’. (Ed K. Rohde.) pp. 92–104. (CSIRO Publishing: Melbourne, Vic., Australia.)

Caira, J. N., Jensen, K., and Healy, C. J. (2001). Interrelationships among tetraphyllidean and lecanicephalidean cestodes. In ‘Interrelationships of the Platyhelminthes’. (Eds D. T. J. Littlewood and R. A. Bray.) pp. 135–158. (Taylor and Francis: London, UK.)

Caira, J. N., Jensen, K., Georgiev, B. B., Kuchta, R., Littlewood, D. T. J., Mariaux, J., Scholz, T., Tkach, V. V., and Waeschenbach, A. (2017a). An overview of tapeworms from vertebrate bowels of the Earth. In ‘Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth’. (Eds J. N. Caira and K. Jensen.) pp. 1–20. (Natural History Museum, University of Kansas: Lawrence, KS, USA.)

Caira, J. N., Bueno, V. M., and Jensen, K. (2017b). Cathetocephalidea. In ‘Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth’. (Eds J. N. Caira and K. Jensen.) pp. 65–76. (Natural History Museum, University of Kansas: Lawrence, KS. USA.)

Caira, J. N., Ivanov, V. A., Jensen, K., and Marques, F. P. L. (2017c). Diphyllidea. In ‘Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth’. (Eds J. N. Caira and K. Jensen.) pp. 149–168. (Natural History Museum, University of Kansas: Lawrence, KS, USA.)

Caira, J. N., Gallagher, K., and Jensen, K. (2017d). Litobothriidea. In ‘Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth’. (Eds J. N. Caira and K. Jensen.) pp. 231–242. (Natural History Museum, University of Kansas: Lawrence, KS, USA.)

Caira, J. N., Jensen, K., and Ivanov, V. A. (2017e). Onchoproteocephalidea II. In ‘Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth’. (Eds J. N. Caira and K. Jensen.) pp. 279–304. (Natural History Museum, University of Kansas: Lawrence, KS, USA.)

Caira, J. N., Jensen, K., and Ruhnke, T. R. (2017f). ‘Tetraphyllidea’ van Beneden, 1850 relics. In ‘Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth’. (Eds J. N. Caira and K. Jensen.) pp. 371–400. (Natural History Museum, University of Kansas: Lawrence, KS, USA.)

Collen, B., Purvis, A., and Gittleman, J. L. (2004). Biological correlates of description date in carnivores and primates. Global Ecology and Biogeography 13, 459–467.
Biological correlates of description date in carnivores and primates.Crossref | GoogleScholarGoogle Scholar |

Compagno, L. J. V., Dando, M., and Fowler, S. (2005). ‘Sharks of the World.’ (Princeton University Press: Princeton, NJ, USA.)

Cressey, R., and Boyle, H. (1978). A new genus and species of parasitic copepod (Pandaridae) from a unique new shark. Pacific Science 32, 25–30.

Dailey, M. D., and Vogelbein, W. (1982). Mixodigmatidae, a new family of cestode (Trypanorhyncha) from a deep sea, planktivorous shark. The Journal of Parasitology 68, 145–149.
Mixodigmatidae, a new family of cestode (Trypanorhyncha) from a deep sea, planktivorous shark.Crossref | GoogleScholarGoogle Scholar |

Davidson, L. N. K., and Dulvy, N. K. (2017). Global marine protected areas to prevent extinctions. Nature Ecology & Evolution 1, 0040.
Global marine protected areas to prevent extinctions.Crossref | GoogleScholarGoogle Scholar |

Ferro, V. G., and Diniz, I. R. (2008). Biological attributes affect the data [date] of description of tiger moths (Arctiidae) in the Brazilian Cerrado. Diversity & Distributions 14, 472–482.
Biological attributes affect the data [date] of description of tiger moths (Arctiidae) in the Brazilian Cerrado.Crossref | GoogleScholarGoogle Scholar |

Gaston, K. J. (1991). Body size and the probability of description: the beetle fauna of Britain. Ecological Entomology 16, 505–508.
Body size and the probability of description: the beetle fauna of Britain.Crossref | GoogleScholarGoogle Scholar |

Gaston, K. J., and Blackburn, T. M. (1994). Are newly described bird species small-bodied? Biodiversity Letters 2, 16–20.
Are newly described bird species small-bodied?Crossref | GoogleScholarGoogle Scholar |

Gaston, K. J., Blackburn, T. M., and Loder, N. (1995). Which species are discovered first? The case of North American butterflies. Biodiversity and Conservation 4, 119–127.
Which species are discovered first? The case of North American butterflies.Crossref | GoogleScholarGoogle Scholar |

Gibbons, M. J., Richardson, A. J., Angel, M. V., Buecher, E., Esnal, G., Fernandez Alamo, M. A., Gibson, R., Itoh, H., Pugh, P., Boettger-Schnack, R., and Thuesen, E. (2005). What determines the likelihood of species discovery in marine holozooplankton: is size, range or depth important? Oikos 109, 567–576.
What determines the likelihood of species discovery in marine holozooplankton: is size, range or depth important?Crossref | GoogleScholarGoogle Scholar |

Jensen, K., Cielocha, J. J., Herzog, K. S., and Caira, J. N. (2017). Lecanicephalidea. In ‘Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth’. (Eds J. N. Caira and K. Jensen.) pp. 207–230. (Natural History Museum, University of Kansas: Lawrence, KS, USA.)

Jorge, F., and Poulin, R. (2018). Poor geographical match between the distributions of host diversity and parasite discovery effort. Proceedings. Biological Sciences 285, 20180072.
Poor geographical match between the distributions of host diversity and parasite discovery effort.Crossref | GoogleScholarGoogle Scholar | 29848643PubMed |

Krasnov, B. R., Shenbrot, G. I., Mouillot, D., Khokhlova, I. S., and Poulin, R. (2005). What are the factors determining the probability of discovering a flea species (Siphonaptera)? Parasitology Research 97, 228–237.
What are the factors determining the probability of discovering a flea species (Siphonaptera)?Crossref | GoogleScholarGoogle Scholar | 15997406PubMed |

Last, P. R. (2007). The state of chondrichthyan taxonomy and systematics. Marine and Freshwater Research 58, 7–9.
The state of chondrichthyan taxonomy and systematics.Crossref | GoogleScholarGoogle Scholar |

Last, P. R., de Carvalho, M. R., Naylor, G. J. P., Séret, B., Stehmann, M. F. W., and White, W. T. (2016a). Introduction. In ‘Rays of the World’. (Eds P. R. Last, W. T. White, M. R. de Carvalho, B. Séret, M. F. W. Stehmann, and G. J. P. Naylor.) pp. 1–9. (CSIRO Publishing: Melbourne, Vic., Australia.)

Last, P. R., White, W. T., de Carvalho, M. R., Séret, B., Stehmann, M. F. W., and Naylor, G. J. P. (Eds) (2016b). ‘Rays of the World.’ (CSIRO Publishing: Melbourne, Vic., Australia.)

May, R. M. (1988). How many species are there on Earth? Science 241, 1441–1449.
How many species are there on Earth?Crossref | GoogleScholarGoogle Scholar | 17790039PubMed |

May, R. M. (2010). Tropical arthropod species, more or less? Science 329, 41–42.
Tropical arthropod species, more or less?Crossref | GoogleScholarGoogle Scholar | 20595603PubMed |

Mora, C., Tittensor, D. P., Adl, S., Simpson, A. G. B., and Worm, B. (2011). How many species are there on Earth and in the ocean. PLoS One 9, e1001127.
How many species are there on Earth and in the ocean.Crossref | GoogleScholarGoogle Scholar |

Morato, T., Watson, R., Pitcher, T. J., and Pauly, D. (2006). Fishing down the deep. Fish and Fisheries 7, 24–34.
Fishing down the deep.Crossref | GoogleScholarGoogle Scholar |

Naylor, G. J. P., Caira, J. N., Jensen, K., Rosana, K. A. M., White, W. T., and Last, P. R. (2012). A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bulletin of the American Museum of Natural History 367, 1–262.
A DNA sequence-based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology.Crossref | GoogleScholarGoogle Scholar |

Palm, H. W. (2004). ‘The Trypanorhyncha Diesing, 1863.’ (PKSPL–IPB Press: Bogor, Indonesia.)

Palm, H., and Caira, J. N. (2008). Host specificity of adult versus larval cestodes of elasmobranch tapeworm order Trypanorhyncha. International Journal for Parasitology 38, 381–388.
Host specificity of adult versus larval cestodes of elasmobranch tapeworm order Trypanorhyncha.Crossref | GoogleScholarGoogle Scholar | 17950740PubMed |

Poulin, R. (1996). How many species are there: are we close to answers? International Journal for Parasitology 26, 1127–1129.
How many species are there: are we close to answers?Crossref | GoogleScholarGoogle Scholar | 8982796PubMed |

Poulin, R. (2002). The evolution of monogenean diversity. International Journal for Parasitology 32, 245–254.
The evolution of monogenean diversity.Crossref | GoogleScholarGoogle Scholar | 11835968PubMed |

Poulin, R. (2010). Latitudinal gradients in parasite diversity: bridging the gap between temperate and tropical areas. Neotropical Helminthology 4, 169–177.

Poulin, R. (2014). Parasite biodiversity revisited: frontiers and constraints. International Journal for Parasitology 44, 581–589.
Parasite biodiversity revisited: frontiers and constraints.Crossref | GoogleScholarGoogle Scholar | 24607559PubMed |

Poulin, R., and Morand, S. (2004). ‘Parasite Biodiversity.’ (Smithsonian Books: Washington, DC, USA.)

Poulin, R., and Mouillot, D. (2005). Host specificity and the probability of discovering species of helminth parasites. Parasitology 130, 709–715.
Host specificity and the probability of discovering species of helminth parasites.Crossref | GoogleScholarGoogle Scholar | 15977908PubMed |

Poulin, R., and Presswell, B. (2016). Taxonomic quality of species descriptions varies over time and with the number of authors, but unevenly among parasite taxa. Systematic Biology 65, 1107–1116.
Taxonomic quality of species descriptions varies over time and with the number of authors, but unevenly among parasite taxa.Crossref | GoogleScholarGoogle Scholar | 27288480PubMed |

Poulin, R., Blasco-Costa, I., and Randhawa, H. S. (2016a). Integrating parasitology and marine ecology: seven challenges towards greater synergy. Journal of Sea Research 113, 3–10.
Integrating parasitology and marine ecology: seven challenges towards greater synergy.Crossref | GoogleScholarGoogle Scholar |

Poulin, R., Besson, A. A., Morin, M. B., and Randhawa, H. S. (2016b). Missing links: testing the completeness of host–parasite checklists. Parasitology 143, 114–122.
Missing links: testing the completeness of host–parasite checklists.Crossref | GoogleScholarGoogle Scholar | 26549369PubMed |

Randhawa, H. S., and Poulin, R. (2009). Determinants and consequences of interspecific body size variation in tetraphyllidean tapeworms. Oecologia 161, 759–769.
Determinants and consequences of interspecific body size variation in tetraphyllidean tapeworms.Crossref | GoogleScholarGoogle Scholar | 19590898PubMed |

Randhawa, H. S., and Poulin, R. (2010). Determinants of tapeworm richness in elasmobranch fishes: untangling environmental and phylogenetic influences. Ecography 33, 866–877.
Determinants of tapeworm richness in elasmobranch fishes: untangling environmental and phylogenetic influences.Crossref | GoogleScholarGoogle Scholar |

Randhawa, H. S., Poulin, R., and Krkošek, M. (2015). Increasing rate of species discovery in sharks coincides with sharp population declines: implications for biodiversity. Ecography 38, 96–107.
Increasing rate of species discovery in sharks coincides with sharp population declines: implications for biodiversity.Crossref | GoogleScholarGoogle Scholar |

Reed, R. N., and Boback, S. M. (2002). Does body size predict dates of species description among North American and Australian reptiles and amphibians? Global Ecology and Biogeography 11, 41–47.
Does body size predict dates of species description among North American and Australian reptiles and amphibians?Crossref | GoogleScholarGoogle Scholar |

Roberts, C. M. (2002). Deep impact: the rising toll of fishing in the deep sea. Trends in Ecology & Evolution 17, 242–245.
Deep impact: the rising toll of fishing in the deep sea.Crossref | GoogleScholarGoogle Scholar |

Ruhnke, T. R., Caira, J. N., and Pickering, M. (2017a). Phyllobothriidea. In ‘Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth’. (Eds J. N. Caira and K. Jensen.) pp. 305–326. (Natural History Museum, University of Kansas: Lawrence, KS, USA.)

Ruhnke, T. R., Reyda, F. B., and Marques, F. P. L. (2017b). Rhinebothriidea. In ‘Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth’. (Eds J. N. Caira and K. Jensen.) pp. 327–348. (Natural History Museum, University of Kansas: Lawrence, KS, USA.)

Spalding, M. D., Fox, H. E., Allen, G. R., Davidson, N., Ferdaña, Z. A., Finlayson, M., Halpern, B. S., Jorge, M. A., Lombana, A., Lourie, S. A., Martin, K. D., McManus, E., Molnar, J., Recchia, C. A., and Robertson, J. (2007). Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583.
Marine ecoregions of the world: a bioregionalization of coastal and shelf areas.Crossref | GoogleScholarGoogle Scholar |

Stein, R. W., Mull, C. G., Kuhn, T. S., Aschilman, N. C., Davidson, L. N. K., Joy, J. B., Smith, G. J., Dulvy, N. K., and Mooers, A. O. (2018). Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nature Ecology & Evolution 2, 288–298.
Global priorities for conserving the evolutionary history of sharks, rays and chimaeras.Crossref | GoogleScholarGoogle Scholar |

Swartz, W., Sala, E., Tracey, S., Watson, R., and Pauly, D. (2010). The spatial expansion and ecological footprint of fisheries (1950 to present). PLoS One 5, e15143.
The spatial expansion and ecological footprint of fisheries (1950 to present).Crossref | GoogleScholarGoogle Scholar | 21151994PubMed |

Taylor, L. R., Compagno, L. J. V., and Struhsaker, P. J. (1983). Megamouth: a new species, genus, and family of lamnoid shark (Megachasma pelagios, family Megachasmidae) from the Hawaiian Islands. Proceedings of the California Academy of Sciences 43, 87–110.

White, W. T., and Last, P. R. (2012). A review of the taxonomy of chondrichthyan fishes: a modern perspective. Journal of Fish Biology 80, 901–917.
A review of the taxonomy of chondrichthyan fishes: a modern perspective.Crossref | GoogleScholarGoogle Scholar | 22497367PubMed |

Wilson, E. O. (2003). The encyclopedia of life. Trends in Ecology & Evolution 18, 77–80.
The encyclopedia of life.Crossref | GoogleScholarGoogle Scholar |