Dissection of culture media for embryos: the most important and less important components and characteristics
David K. GardnerA Department of Zoology, University of Melbourne, Victoria 3010, Australia.
B Email: david.gardner@unimelb.edu.au
Reproduction, Fertility and Development 20(1) 9-18 https://doi.org/10.1071/RD07160
Published: 12 December 2007
Abstract
Improvements in culture media formulations have led to an increase in the ability to maintain the mammalian embryo in culture throughout the preimplantation and pre-attachment period. Amino acids and specific macromolecules have been identified as being key medium components, whereas temporal dynamics have been recognised as important media characteristics. Furthermore, other laboratory factors that directly impact embryo development and viability have been identified. Such factors include the use of a reduced oxygen tension, an appropriate incubation system and an adequate prescreening of all contact supplies. With rigourous quality systems in place, it is possible to obtain in vivo rates of embryo development in vitro using new media formulations while maintaining high levels of embryo viability. The future of embryo culture will likely be based on novel culture chips capable of providing temporal dynamics while facilitating real-time analysis of embryo physiology.
Anbari, K. , and Schultz, R. M. (1993). Effect of sodium and betaine in culture media on development and relative rates of protein synthesis in preimplantation mouse embryos in vitro. Mol. Reprod. Dev. 35, 24–28.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bavister, B. D. (1995). Culture of preimplantation embryos: facts and artifacts. Hum. Reprod. Update 1, 91–148.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bavister, B. D. , Kinsey, D. L. , Lane, M. , and Gardner, D. K. (2003). Recombinant human albumin supports hamster in-vitro fertilization. Hum. Reprod. 18, 113–116.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Gardner, D. K. , and Lane, M. (2003). Towards a single embryo transfer. Reprod. Biomed. Online 6, 470–481.
| PubMed |
Gardner, D. K. , and Leese, H. J. (1990). Concentrations of nutrients in mouse oviduct fluid and their effects on embryo development and metabolism in vitro. J. Reprod. Fertil. 88, 361–368.
| PubMed |
Gardner, D. K. , Lane, M. , Spitzer, A. , and Batt, P. A. (1994). Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol. Reprod. 50, 390–400.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Miller, J. G. , and Schultz, G. A. (1987). Amino acid content of preimplantation rabbit embryos and fluids of the reproductive tract. Biol. Reprod. 36, 125–129.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Palasz, A. T. , Thundathil, J. , Verrall, R. E. , and Mapletoft, R. J. (2000). The effect of macromolecular supplementation on the surface tension of TCM-199 and the utilization of growth factors by bovine oocytes and embryos in culture. Anim. Reprod. Sci. 58, 229–240.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Palasz, A. T. , Rodriguez-Martinez, H. , Beltran-Brena, P. , Perez-Garnelo, S. , Martinez, M. F. , Gutierrez-Adan, A. , and De la Fuente, J. (2006). Effects of hyaluronan, BSA, and serum on bovine embryo in vitro development, ultrastructure, and gene expression patterns. Mol. Reprod. Dev. 73, 1503–1511.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Perkins, J. L. , and Goode, L. (1967). Free amino acids in the oviduct fluid of the ewe. J. Reprod. Fertil. 14, 309–311.
| PubMed |
Phillips, K. P. , and Baltz, J. M. (1999). Intracellular pH regulation by HCO3–/Cl– exchanger activity appears following fertilization in the mouse. Dev. Biol. 208, 392–405.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Quinn, P. , and Harlow, G. M. (1978). The effect of oxygen on the development of preimplantation mouse embryos in vitro. J. Exp. Zool. 206, 73–80.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Rieger, D. , Loskutoff, N. M. , and Betteridge, K. J. (1992). Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod. Fertil. Dev. 4, 547–557.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Schultz, G. A. , Kaye, P. L. , McKay, D. J. , and Johnson, M. H. (1981). Endogenous amino acid pool sizes in mouse eggs and preimplantation embryos. J. Reprod. Fertil. 61, 387–393.
| PubMed |
Scott, L. F. , Sundaram, S. G. , and Smith, S. (1993). The relevance and use of mouse embryos bioassays for quality control in an assisted reproductive technology program. Fertil. Steril. 60, 559–568.
| PubMed |
Sinawat, S. , Hsaio, W. C. , Flockhart, J. H. , Kaufman, M. H. , Keith, J. , and West, J. D. (2003). Fetal abnormalities produced after preimplantation exposure of mouse embryos to ammonium chloride. Hum. Reprod. 18, 2157–2165.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Sinclair, K. D. , McEvoy, T. G. , Carol, C. , Maxfield, E. K. , Maltin, C. A. , Young, L. E. , Wilmut, I. , Robinson, J. J. , and Broadbent, P. J. (1998). Conceptus growth and development following in vitro culture of ovine embryos in media supplemented with sera. Theriogenology 49, 218. [Abstract]
| Crossref | GoogleScholarGoogle Scholar |
Spindle, A. I. , and Pedersen, R. A. (1973). Hatching, attachment, and outgrowth of mouse blastocysts in vitro: fixed nitrogen requirements. J. Exp. Zool. 186, 305–318.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Steeves, T. E. , and Gardner, D. K. (1999). Temporal and differential effects of amino acids on bovine embryo development in culture. Biol. Reprod. 61, 731–740.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Stojkovic, M. , Kolle, S. , Peinl, S. , Stojkovic, P. , Zakhartchenko, V. , Thompson, J. G. , Wenigerkind, H. , Reichenbach, H. D. , Sinowatz, F. , and Wolf, E. (2002). Effects of high concentrations of hyaluronan in culture medium on development and survival rates of fresh and frozen–thawed bovine embryos produced in vitro. Reproduction 124, 141–153.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Suh, R. S. , Phadke, N. , Ohl, D. A. , Takayama, S. , and Smith, G. D. (2003). Rethinking gamete/embryo isolation and culture with microfluidics. Hum. Reprod. Update 9, 451–461.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Takahashi, Y. , and First, N. L. (1992). In vitro development of bovine one-cell embryos influence of glucose, lactate, amino acids and vitamins. Theriogenology 37, 963–978.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Thompson, J. G. , Simpson, A. C. , Pugh, P. A. , Donnelly, P. E. , and Tervit, H. R. (1990). Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J. Reprod. Fertil. 89, 573–578.
| PubMed |
Thompson, J. G. , Gardner, D. K. , Pugh, P. A. , McMillan, W. H. , and Tervit, H. R. (1995). Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol. Reprod. 53, 1385–1391.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Van Winkle, L. J. (1988). Amino acid transport in developing animal oocytes and early conceptuses. Biochim. Biophys. Acta 947, 173–208.
| PubMed |
Van Winkle, L. J. , Haghighat, N. , and Campione, A. L. (1990). Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J. Exp. Zool. 253, 215–219.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Virant-Klun, I. , Tomazevic, T. , Vrtacnik-Bokal, E. , Vogler, A. , Krsnik, M. , and Meden-Vrtovec, H. (2006). Increased ammonium in culture medium reduces the development of human embryos to the blastocyst stage. Fertil. Steril. 85, 526–528.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Walker, S. K. , Heard, T. M. , and Seamark, R. F. (1992). In vitro culture of sheep embryos without co-culture: success and perspectives. Theriogenology 37, 111–126.
| Crossref | GoogleScholarGoogle Scholar |
Wheeler, M. B. , Walters, E. M. , and Beebe, D. J. (2007). Toward culture of single gametes: the development of microfluidic platforms for assisted reproduction. Theriogenology 68((Suppl. 1)), S178–S189.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Whitten, W. K. (1956). Culture of tubal mouse ova. Nature 177, 96–97.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Whitten, W. K. (1957). Culture of tubal ova. Nature 179, 1081–1082.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Whitten, W. K. , and Biggers, J. D. (1968). Complete development in vitro of the pre-implantation stages of the mouse in a simple chemically defined medium. J. Reprod. Fertil. 17, 399–401.
| PubMed |
Whittingham, D. G. (1971). Culture of mouse ova. J. Reprod. Fertil. Suppl. 14, 7–21.
| PubMed |
Wu, G. , and Morris, S. M. (1998). Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17.
| PubMed |
Zhang, X. , and Armstrong, D. T. (1990). Presence of amino acids and insulin in a chemically defined medium improves development of 8-cell rat embryos in vitro and subsequent implantation in vivo. Biol. Reprod. 42, 662–668.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Zhao, Y. , and Baltz, J. M. (1996). Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am. J. Physiol. 271, C1512–C1520.
| PubMed |