Presence of vascular endothelial growth factor during the first half of IVM improves the meiotic and developmental competence of porcine oocytes from small follicles
Tra M. T. Bui A , Khánh X. Nguyễn A , Asako Karata A , Pilar Ferré A , Minh T. Trần A , Takuya Wakai A and Hiroaki Funahashi A BA Department of Animal Science, Graduate School of Environmental and Life Sciences, Okayama University, Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan.
B Corresponding author. Email: hirofun@okayama-u.ac.jp
Reproduction, Fertility and Development 29(10) 1902-1909 https://doi.org/10.1071/RD16321
Submitted: 1 May 2016 Accepted: 20 October 2016 Published: 12 December 2016
Abstract
The aim of the present study was to investigate the effect of vascular endothelial growth factor (VEGF) on the meiotic and developmental competence of porcine oocytes from small follicles (SF; 0.5–3 mm diameter). When cumulus–oocyte complexes (COCs) from medium-sized follicles (MF; 3–6 mm diameter) and SF were cultured for IVM, the maturation rates were significantly higher for oocytes from MF than SF. Concentrations of VEGF in the medium were significantly higher for COCs cultured from MF than SF. When COCs from SF were exposed to 200 ng mL–1 VEGF during the first 20 h of IVM, the maturation rate improved significantly and was similar to that of oocytes derived from MF. The fertilisability of oocytes was also significantly higher than that of VEGF-free SF controls. Following parthenogenetic activation, the blastocyst formation rate improved significantly when SF COC culture was supplemented with 200 ng mL–1 VEGF, with the rate similar to that of oocytes from MF. The results of the present study indicate that VEGF markedly improves the meiotic and developmental competence of oocytes derived from SF, especially at a concentration of 200 ng mL–1 during the first 20 h of IVM.
Additional keyword: pig.
References
Abir, R., Ao, A., Zhang, X. Y., Garor, R., Nitke, S., and Fisch, B. (2010). Vascular endothelial growth factor A and its two receptors in human preantral follicles from fetuses, girls, and women. Fertil. Steril. 93, 2337–2347.| Vascular endothelial growth factor A and its two receptors in human preantral follicles from fetuses, girls, and women.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXms1ylsb0%3D&md5=79dbec1968c5784ce5954a93af63a267CAS |
Akaki, Y., Yoshioka, K., Noguchi, M., Hoshi, H., and Funahashi, H. (2009). Successful piglet production in a chemically defined system for in-vitro production of porcine embryos: dibutyryl cyclic AMP and epidermal growth factor-family peptides support in-vitro maturation of oocytes in the absence of gonadotropins. J. Reprod. Dev. 55, 446–453.
| Successful piglet production in a chemically defined system for in-vitro production of porcine embryos: dibutyryl cyclic AMP and epidermal growth factor-family peptides support in-vitro maturation of oocytes in the absence of gonadotropins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOmtLfM&md5=b808962f8d1da1f92cbb021b829097feCAS |
Anchordoquy, J. M., Anchordoquy, J. P., Testa, J. A., Sirini, M. A., and Furnus, C. C. (2015). Influence of vascular endothelial growth factor and cysteamine on in vitro bovine oocyte maturation and subsequent embryo development. Cell Biol. Int. 39, 1090–1098.
| Influence of vascular endothelial growth factor and cysteamine on in vitro bovine oocyte maturation and subsequent embryo development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsFejtbzE&md5=d89ccd294eaae5c86c1fa4e78f92da00CAS |
Barboni, B., Turriani, M., Galeati, G., Spinaci, M., Bacci, M. L., Forni, M., and Mattioli, M. (2000). Vascular endothelial growth factor production in growing pig antral follicles. Biol. Reprod. 63, 858–864.
| Vascular endothelial growth factor production in growing pig antral follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFCiu7c%3D&md5=6d9d9887b3c4e2eb19372af34ef72725CAS |
Berisha, B., Schams, D., Kosmann, M., Amselgruber, W., and Einspanier, R. (2000). Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles. J. Endocrinol. 167, 371–382.
| Expression and localisation of vascular endothelial growth factor and basic fibroblast growth factor during the final growth of bovine ovarian follicles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjtVCqtg%3D%3D&md5=05cd5d5c9eb2eb5dc270dd08f503f183CAS |
Biswas, D., and Hyun, S. H. (2011). Supplementation with vascular endothelial growth factor during in vitro maturation of porcine cumulus oocyte complexes and subsequent developmental competence after in vitro fertilization. Theriogenology 76, 153–160.
| Supplementation with vascular endothelial growth factor during in vitro maturation of porcine cumulus oocyte complexes and subsequent developmental competence after in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKitbk%3D&md5=871fd7f3fb1c56251e745bd68a626216CAS |
Biswas, D., Jeon, Y.-B., Kim, G. H., Jeung, E. B., and Hyun, S. H. (2010). Effect of vascular endothelial growth factor on in vitro porcine oocyte maturation and subsequent developmental competence after parthenogenesis. J. Anim. Vet. Advances 9, 2924–2931.
| Effect of vascular endothelial growth factor on in vitro porcine oocyte maturation and subsequent developmental competence after parthenogenesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XktV2jsr4%3D&md5=6d089076fa84835c62819b2d79f6441dCAS |
Biswas, D., Jung, E. M., Jeung, E. B., and Hyun, S. H. (2011). Effects of vascular endothelial growth factor on porcine preimplantation embryos produced by in vitro fertilization and somatic cell nuclear transfer. Theriogenology 75, 256–267.
| Effects of vascular endothelial growth factor on porcine preimplantation embryos produced by in vitro fertilization and somatic cell nuclear transfer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsF2isbnP&md5=4d683abb403019f5b13f2743ff226b5fCAS |
Bruno, J. B., Matos, M. H. T., Chaves, R. N., Celestino, J. J. H., Saraiva, M. V. A., Lima-Verde, I. B., Araújo, V. R., and Figueiredo, J. R. (2009). Angiogenic factors and ovarian follicle development. Anim. Reprod. 6, 371–379.
Cognie, Y., Benoit, F., Poulin, N., Khatir, H., and Driancourt, M. A. (1998). Effect of follicle size and of the FecB Booroola gene on oocyte function in sheep. J. Reprod. Fertil. 112, 379–386.
| Effect of follicle size and of the FecB Booroola gene on oocyte function in sheep.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktVent7g%3D&md5=52b13d4342d4dbfe037d2193e01422c7CAS |
Cooper, D. K., Hara, H., Ezzelarab, M., Bottino, R., Trucco, M., Phelps, C., Ayares, D., and Dai, Y. (2013). The potential of genetically-engineered pigs in providing an alternative source of organs and cells for transplantation. J. Biomed. Res. 27, 249–253.
| The potential of genetically-engineered pigs in providing an alternative source of organs and cells for transplantation.Crossref | GoogleScholarGoogle Scholar |
Crozet, N., Ahmed-Ali, M., and Dubos, M. P. (1995). Developmental competence of goat oocytes from follicles of different size categories following maturation, fertilization and culture in vitro. J. Reprod. Fertil. 103, 293–298.
| Developmental competence of goat oocytes from follicles of different size categories following maturation, fertilization and culture in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvV2rtLg%3D&md5=fcede29c9c05e26ec7bd368cfce928e1CAS |
Einspanier, R., Schonfelder, M., Muller, K., Stojkovic, M., Kosmann, M., Wolf, E., and Schams, D. (2002). Expression of the vascular endothelial growth factor and its receptors and effects of VEGF during in vitro maturation of bovine cumulus–oocyte complexes (COC). Mol. Reprod. Dev. 62, 29–36.
| Expression of the vascular endothelial growth factor and its receptors and effects of VEGF during in vitro maturation of bovine cumulus–oocyte complexes (COC).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivVChurs%3D&md5=924694ed77c93d3cb45a5237804f71c0CAS |
Ferrara, N., Carver-Moore, K., Chen, H., Dowd, M., Lu, L., O’Shea, K. S., Powell-Braxton, L., Hillan, K. J., and Moore, M. W. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442.
| Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XitVKqtLk%3D&md5=3aaf516274494e531d9f29505187f34bCAS |
Ferrara, N., Gerber, H. P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nat. Med. 9, 669–676.
| The biology of VEGF and its receptors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFOnur4%3D&md5=f9a619eb1e8c5ea6d315e9e9b457d532CAS |
Funahashi, H. (2003). Polyspermic penetration in porcine IVM–IVF systems. Reprod. Fertil. Dev. 15, 167–177.
| Polyspermic penetration in porcine IVM–IVF systems.Crossref | GoogleScholarGoogle Scholar |
Funahashi, H. (2005). Effect of beta-mercaptoethanol during in vitro fertilization procedures on sperm penetration into porcine oocytes and the early development in vitro. Reproduction 130, 889–898.
| Effect of beta-mercaptoethanol during in vitro fertilization procedures on sperm penetration into porcine oocytes and the early development in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xkt12nuw%3D%3D&md5=e6611e35e0a6f028da0f47f2880f941bCAS |
Funahashi, H., and Day, B. N. (1993). Effects of follicular fluid at fertilization in vitro on sperm penetration in pig oocytes. J. Reprod. Fertil. 99, 97–103.
| Effects of follicular fluid at fertilization in vitro on sperm penetration in pig oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7htFWhsA%3D%3D&md5=3e8a283bd77ff1ff86ac18ff3d009c64CAS |
Funahashi, H., Cantley, T. C., and Day, B. N. (1997). Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization. Biol. Reprod. 57, 49–53.
| Synchronization of meiosis in porcine oocytes by exposure to dibutyryl cyclic adenosine monophosphate improves developmental competence following in vitro fertilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktFCntb0%3D&md5=aea86b0b127c2eb62a489e021db24d1eCAS |
Galli, C., Lagutina, I., and Lazzari, G. (2003). Introduction to cloning by nuclear transplantation. Cloning Stem Cells 5, 223–232.
| Introduction to cloning by nuclear transplantation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXislaqtg%3D%3D&md5=4f55121f98ca9f842a187200c1917addCAS |
Gosden, R. G., and Telfer, E. (1987). Number of follicles and oocytes in mammalian ovaries and their allometric relationships. J. Zool. (Lond.) 211, 169–175.
| Number of follicles and oocytes in mammalian ovaries and their allometric relationships.Crossref | GoogleScholarGoogle Scholar |
Greenaway, J., Connor, K., Pedersen, H. G., Coomber, B. L., LaMarre, J., and Petrik, J. (2004). Vascular endothelial growth factor and its receptor, Flk-1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology 145, 2896–2905.
| Vascular endothelial growth factor and its receptor, Flk-1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXkt12gu7w%3D&md5=fa741a53f34d4a5605871839e6101669CAS |
Hanahan, D. (1997). Signaling vascular morphogenesis and maintenance. Science 277, 48–50.
| Signaling vascular morphogenesis and maintenance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVyhtrk%3D&md5=35fa78b50a13e3fe69f3f852e2df85b2CAS |
Kere, M., Siriboon, C., Liao, J. W., Lo, N. W., Chiang, H. I., Fan, Y. K., Kastelic, J. P., and Ju, J. C. (2014). Vascular endothelial growth factor A improves quality of matured porcine oocytes and developing parthenotes. Domest. Anim. Endocrinol. 49, 60–69.
| Vascular endothelial growth factor A improves quality of matured porcine oocytes and developing parthenotes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtlGgtrnJ&md5=8606bbbc44ca8fddc9c34cd723472171CAS |
Khatir, H., Anouassi, A., and Tibary, A. (2007). Effect of follicular size on in vitro developmental competence of oocytes and viability of embryos after transfer in the dromedary (Camelus dromedarius). Anim. Reprod. Sci. 99, 413–420.
| Effect of follicular size on in vitro developmental competence of oocytes and viability of embryos after transfer in the dromedary (Camelus dromedarius).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7pvVOrtg%3D%3D&md5=1fe8a41a54a64770d5363b4ebc5df855CAS |
Kohata, C., Izquierdo-Rico, M. J., Romar, R., and Funahashi, H. (2013). Development competence and relative transcript abundance of oocytes derived from small and medium follicles of prepubertal gilts. Theriogenology 80, 970–978.
| Development competence and relative transcript abundance of oocytes derived from small and medium follicles of prepubertal gilts.Crossref | GoogleScholarGoogle Scholar |
Kosaka, N., Sudo, N., Miyamoto, A., and Shimizu, T. (2007). Vascular endothelial growth factor (VEGF) suppresses ovarian granulosa cell apoptosis in vitro. Biochem. Biophys. Res. Commun. 363, 733–737.
| Vascular endothelial growth factor (VEGF) suppresses ovarian granulosa cell apoptosis in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFCjtrrK&md5=c9dea87fde35010819899021acbd0792CAS |
Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V., and Ferrara, N. (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309.
| Vascular endothelial growth factor is a secreted angiogenic mitogen.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXls1GltLo%3D&md5=f23e44e86532f81fd7c5e89dfee43ca5CAS |
Lonergan, P., Monaghan, P., Rizos, D., Boland, M. P., and Gordon, I. (1994). Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization, and culture in vitro. Mol. Reprod. Dev. 37, 48–53.
| Effect of follicle size on bovine oocyte quality and developmental competence following maturation, fertilization, and culture in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7ns1Wltw%3D%3D&md5=721dc5e11da3fe900d48a8938b833bb2CAS |
Luo, H., Kimura, K., Aoki, M., and Hirako, M. (2002). Effect of vascular endothelial growth factor on maturation, fertilization and developmental competence of bovine oocytes. J. Vet. Med. Sci. 64, 803–806.
| Effect of vascular endothelial growth factor on maturation, fertilization and developmental competence of bovine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFSrsr0%3D&md5=b3ba2fe4e38b20ffef81389cccb8320dCAS |
Marchal, R., Vigneron, C., Perreau, C., Bali-Papp, A., and Mermillod, P. (2002). Effect of follicular size on meiotic and developmental competence of porcine oocytes. Theriogenology 57, 1523–1532.
| Effect of follicular size on meiotic and developmental competence of porcine oocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zhtFykug%3D%3D&md5=00c2baf29980e151c73493ee2b789a22CAS |
Mattioli, M., Barboni, B., Turriani, M., Galeati, G., Zannoni, A., Castellani, G., Berardinelli, P., and Scapolo, P. A. (2001). Follicle activation involves vascular endothelial growth factor production and increased blood vessel extension. Biol. Reprod. 65, 1014–1019.
| Follicle activation involves vascular endothelial growth factor production and increased blood vessel extension.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnt1Cmsr4%3D&md5=51ad51fd3fabd6494f33304a5c8b86e5CAS |
Otoi, T., Fujii, M., Tanaka, M., Ooka, A., and Suzuki, T. (2000). Oocyte diameter in relation to meiotic competence and sperm penetration. Theriogenology 54, 535–542.
| Oocyte diameter in relation to meiotic competence and sperm penetration.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3crht1KhtA%3D%3D&md5=c6153e90fa3179577bb3505c3dda73aaCAS |
Raghu, H. M., Nandi, S., and Reddy, S. M. (2002). Follicle size and oocyte diameter in relation to developmental competence of buffalo oocytes in vitro. Reprod. Fertil. Dev. 14, 55–61.
| Follicle size and oocyte diameter in relation to developmental competence of buffalo oocytes in vitro.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zgvFemsg%3D%3D&md5=05ef5ce2cf86de865fe4cb37d658b79bCAS |
Romaguera, R., Casanovas, A., Morato, R., Izquierdo, D., Catala, M., Jimenez-Macedo, A. R., Mogas, T., and Paramio, M. T. (2010a). Effect of follicle diameter on oocyte apoptosis, embryo development and chromosomal ploidy in prepubertal goats. Theriogenology 74, 364–373.
| Effect of follicle diameter on oocyte apoptosis, embryo development and chromosomal ploidy in prepubertal goats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cnntVGltA%3D%3D&md5=96f4106cd716e2072c6651b5ab2edd10CAS |
Romaguera, R., Morato, R., Jimenez-Macedo, A. R., Catala, M., Roura, M., Paramio, M. T., Palomo, M. J., Mogas, T., and Izquierdo, D. (2010b). Oocyte secreted factors improve embryo developmental competence of COCs from small follicles in prepubertal goats. Theriogenology 74, 1050–1059.
| Oocyte secreted factors improve embryo developmental competence of COCs from small follicles in prepubertal goats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cjpvFyisg%3D%3D&md5=a41dda4dff8e8257366aa4d6257d95f6CAS |
Romar, R., Funahashi, H., and Coy, P. (2016). In vitro fertilization in pigs: new molecules and protocols to consider in the forthcoming years. Theriogenology 85, 125–134.
| In vitro fertilization in pigs: new molecules and protocols to consider in the forthcoming years.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht12ktbbI&md5=8c2495b4ea2ddabe272e9085f046e058CAS |
Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., and Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219, 983–985.
| Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3s7hvF2mtw%3D%3D&md5=15b98c4ec430441d2f9f5acb06ed0d74CAS |
Shimizu, T., Jiang, J. Y., Iijima, K., Miyabayashi, K., Ogawa, Y., Sasada, H., and Sato, E. (2003). Induction of follicular development by direct single injection of vascular endothelial growth factor gene fragments into the ovary of miniature gilts. Biol. Reprod. 69, 1388–1393.
| Induction of follicular development by direct single injection of vascular endothelial growth factor gene fragments into the ovary of miniature gilts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnsV2nsbk%3D&md5=c2589a31081cd407a0f2f067b255dcd8CAS |
Shin, S. Y., Lee, J. Y., Lee, E., Choi, J., Yoon, B. K., Bae, D., and Choi, D. (2006). Protective effect of vascular endothelial growth factor (VEGF) in frozen–thawed granulosa cells is mediated by inhibition of apoptosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 125, 233–238.
| Protective effect of vascular endothelial growth factor (VEGF) in frozen–thawed granulosa cells is mediated by inhibition of apoptosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFGktLg%3D&md5=d4920055fcff6bb74eac91d6f3b5a0c4CAS |
Wang, W. H., Niwa, K., and Okuda, K. (1991). In-vitro penetration of pig oocytes matured in culture by frozen–thawed ejaculated spermatozoa. J. Reprod. Fertil. 93, 491–496.
| In-vitro penetration of pig oocytes matured in culture by frozen–thawed ejaculated spermatozoa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK387lslSrsw%3D%3D&md5=edabf4b778886965f7d529ee87a1c60aCAS |
Wang, B., Gao, Y., Xiao, Z., Chen, B., Han, J., Zhang, J., Wang, X., and Dai, J. (2009). Erk1/2 promotes proliferation and inhibits neuronal differentiation of neural stem cells. Neurosci. Lett. 461, 252–257.
| Erk1/2 promotes proliferation and inhibits neuronal differentiation of neural stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXosVehu78%3D&md5=0d4d531902dd442cb37a635f7e9a32b1CAS |
Watson, A. J. (2007). Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J. Anim. Sci. 85, E1–E3.
| Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s7ntFensw%3D%3D&md5=9754986377fc919eeee199018d9afa02CAS |
Wittmaack, F. M., Kreger, D. O., Blasco, L., Tureck, R. W., Mastroianni, L., and Lessey, B. A. (1994). Effect of follicular size on oocyte retrieval, fertilization, cleavage, and embryo quality in in vitro fertilization cycles: a 6-year data collection. Fertil. Steril. 62, 1205–1210.
| Effect of follicular size on oocyte retrieval, fertilization, cleavage, and embryo quality in in vitro fertilization cycles: a 6-year data collection.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2Fks1Cjsw%3D%3D&md5=e9e0138816edd76211bfe1185fcc0c96CAS |
Yang, M. Y., and Fortune, J. E. (2007). Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro. Mol. Reprod. Dev. 74, 1095–1104.
| Vascular endothelial growth factor stimulates the primary to secondary follicle transition in bovine follicles in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpt1alsL8%3D&md5=8c3d99cc9f2b3002aa96a01bae664545CAS |
Yoon, K. W., Shin, T. Y., Park, J. I., Roh, S., Lim, J. M., Lee, B. C., Hwang, W. S., and Lee, E. S. (2000). Development of porcine oocytes from preovulatory follicles of different sizes after maturation in media supplemented with follicular fluids. Reprod. Fertil. Dev. 12, 133–139.
| Development of porcine oocytes from preovulatory follicles of different sizes after maturation in media supplemented with follicular fluids.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvjsFejtw%3D%3D&md5=35214753277d82d7847eb78526020010CAS |
Yoshioka, K., Suzuki, C., and Onishi, A. (2008). Defined system for in vitro production of porcine embryos using a single basic medium. J. Reprod. Dev. 54, 208–213.
| Defined system for in vitro production of porcine embryos using a single basic medium.Crossref | GoogleScholarGoogle Scholar |
Zimmermann, R. C., Xiao, E., Bohlen, P., and Ferin, M. (2002). Administration of antivascular endothelial growth factor receptor 2 antibody in the early follicular phase delays follicular selection and development in the rhesus monkey. Endocrinology 143, 2496–2502.
| Administration of antivascular endothelial growth factor receptor 2 antibody in the early follicular phase delays follicular selection and development in the rhesus monkey.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltVymsL0%3D&md5=57ca0ce2273a2d38be10c5028af434bfCAS |