Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
REVIEW

Transforming growth factor-β superfamily and interferon-τ in ovarian function and embryo development in female cattle: review of biology and application

Michael J. D’Occhio https://orcid.org/0000-0001-8952-3091 A , Giuseppe Campanile B and Pietro S. Baruselli https://orcid.org/0000-0002-6773-4450 C D
+ Author Affiliations
- Author Affiliations

A School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 410 Werombi Road, Camden, NSW 2006, Australia.

B Department of Veterinary Medicine and Animal Production, University of Naples Federico II, V. F. Delpino, 1 80137 Naples, Italy.

C Department of Animal Reproduction, Faculty of Veterinary Medicine and Zootecnia, University of Sao Paulo, Sao Paulo, CEP 05508-270 Brazil.

D Corresponding author. Email: barusell@usp.br

Reproduction, Fertility and Development 32(6) 539-552 https://doi.org/10.1071/RD19123
Submitted: 1 April 2019  Accepted: 16 September 2019   Published: 6 February 2020

Abstract

Survival of the embryo and establishment of a pregnancy is a critical period in the reproductive function of female cattle. This review examines how the transforming growth factor-β (TGFB) superfamily (i.e. bone morphogenetic protein (BMP) 15, growth differentiation factor (GDF) 9, anti-Müllerian hormone (AMH)) and interferon-τ (IFNT) affect ovarian function and embryo development. The oocyte in a primary follicle secretes BMP15 and GDF9, which, together, organise the surrounding granulosa and theca cells into the oocyte–cumulus–follicle complex. At the same time, the granulosa secretes AMH, which affects the oocyte. This autocrine–paracrine dialogue between the oocyte and somatic cells continues throughout follicle development and is fundamental in establishing the fertilisation potential and embryo developmental competency of oocytes. The early bovine embryo secretes IFNT, which acts at the uterine endometrium, corpus luteum and blood leucocytes. IFNT is involved in the maternal recognition of pregnancy and immunomodulation to prevent rejection of the embryo, and supports progesterone secretion. Manipulation of BMP15, GDF9, AMH and IFNT in both in vivo and in vitro studies has confirmed their importance in reproductive function in female cattle. This review makes the case that a deeper understanding of the biology of BMP15, GDF9, AMH and IFNT will lead to new strategies to increase embryo survival and improve fertility in cattle. The enhancement of oocyte quality, early embryo development and implantation is considered necessary for the next step change in the efficiency of natural and assisted reproduction in cattle.

Additional keywords: anti-Müllerian hormone, bone morphogenetic protein 15, embryo survival, growth differentiation factor 9.


References

Adams, G. P., Jaiswal, R., Singh, J., and Malhi, P. (2008). Progress in understanding ovarian follicular dynamics in cattle. Theriogenology 69, 72–80.
Progress in understanding ovarian follicular dynamics in cattle.Crossref | GoogleScholarGoogle Scholar | 17980420PubMed |

Alam, M. H., Lee, J., and Miyano, T. (2018). GDF9 and BMP15 induce development of antrum-like structures by bovine granulosa cells without oocytes. J. Reprod. Dev. 64, 423–431.
GDF9 and BMP15 induce development of antrum-like structures by bovine granulosa cells without oocytes.Crossref | GoogleScholarGoogle Scholar | 30033985PubMed |

Antoniazzi, A. Q., Webb, B. T., Romero, J. J., Ashley, R. L., Smirnova, N. P., Henkes, L. E., Bott, R. C., Oliveira, J. F., Niswender, G. D., Bazer, F. W., and Hansen, T. R. (2013). Endocrine delivery of interferon tau protects the corpus luteum from prostaglandin F2alpha-induced luteolysis in ewes. Biol. Reprod. 88, 144.
Endocrine delivery of interferon tau protects the corpus luteum from prostaglandin F2alpha-induced luteolysis in ewes.Crossref | GoogleScholarGoogle Scholar | 23616594PubMed |

Arosh, J. A., Banu, S. K., and McCracken, J. A. (2016). Novel concepts on the role of prostaglandins on luteal maintenance and maternal recognition and establishment of pregnancy in ruminants. J. Dairy Sci. 99, 5926–5940.
Novel concepts on the role of prostaglandins on luteal maintenance and maternal recognition and establishment of pregnancy in ruminants.Crossref | GoogleScholarGoogle Scholar | 27179861PubMed |

Ashworth, C. J., and Bazer, F. W. (1989). Changes in ovine conceptus and endometrial function following asynchronous embryo transfer or administration of progesterone. Biol. Reprod. 40, 425–433.
Changes in ovine conceptus and endometrial function following asynchronous embryo transfer or administration of progesterone.Crossref | GoogleScholarGoogle Scholar | 2720035PubMed |

Baldrighi, J., Filho, M. F. S., Batista, E. O. S., Lopes, R. N. V. R., Visintin, J. A., Baruselli, P. S., and Assumpcao, M. E. O. A. (2014). Anti-Mullerian hormone concentration and antral ovarian follicle population in Murrah heifers compared to Holstein and Gyr kept under the same management. Reprod. Domest. Anim. 49, 1015–1020.
Anti-Mullerian hormone concentration and antral ovarian follicle population in Murrah heifers compared to Holstein and Gyr kept under the same management.Crossref | GoogleScholarGoogle Scholar | 25291989PubMed |

Bao, Z.-J., Zhao, S., Haq, I. U., and Zeng, S.-M. (2014). Recombinant bovine interferon-τ enhances in vitro development of bovine embryos by upregulating expression of connexin 43 and E-cadherin. J. Dairy Sci. 97, 6917–6925.
Recombinant bovine interferon-τ enhances in vitro development of bovine embryos by upregulating expression of connexin 43 and E-cadherin.Crossref | GoogleScholarGoogle Scholar | 25242422PubMed |

Baruselli, P. S., Batista, E. O. S., Vieira, L. M., and Souza, A. H. (2015). Relationship between follicle population, AMH concentration and fertility in cattle. Anim. Reprod. 12, 487–497.

Baruselli, P. S., Batista, E. O. S., and Ferreira, R. M. (2016a). Plasma anti-Müllerian hormone allows reproductive selection of donors with greater potential of embryo production. Spermova 6, 1–13.
Plasma anti-Müllerian hormone allows reproductive selection of donors with greater potential of embryo production.Crossref | GoogleScholarGoogle Scholar |

Baruselli, P. S., Batista, E. O. S., Vieira, L. M., Ferreira, R. M., Guerreiro, B. G., Bayeux, B. M., Sales, J. N. S., Souza, A. H., and Gimenes, L. U. (2016b). Factors that interfere with oocyte quality for in vitro production of cattle embryos: effects of different developmental & reproductive stages. Anim. Reprod. 13, 264–272.
Factors that interfere with oocyte quality for in vitro production of cattle embryos: effects of different developmental & reproductive stages.Crossref | GoogleScholarGoogle Scholar |

Baruselli, P. S., Ferreira, R. M., Sa Filho, M. F., and Bo, G. A. (2018). Review: using artificial insemination v. natural service in beef herds. Animal 12, s45–s52.
Review: using artificial insemination v. natural service in beef herds.Crossref | GoogleScholarGoogle Scholar | 29554986PubMed |

Basavaraja, R., Przygrodzka, E., Pawlinski, B., Gajewski, Z., Kaczmarek, M. K., and Meidan, R. (2017). Interferon-tau promotes luteal endothelial cell survival and inhibits specific luteolytic genes in bovine corpus luteum. Reproduction 154, 559–568.
Interferon-tau promotes luteal endothelial cell survival and inhibits specific luteolytic genes in bovine corpus luteum.Crossref | GoogleScholarGoogle Scholar | 28808111PubMed |

Batista, E. O. S., Macedo, G. G., Sala, R. V., Ortolan, M. D. D. V., Filho, M. F. S., Del Valle, T. A., Jesus, E. F., Lopes, R. N. V. R., Renno, F. P., and Baruselli, P. S. (2014). Plasma antimullerian hormone as a predictor of ovarian antral follicular population in Bos indicus (Nelore) and Bos taurus (Holstein) heifers. Reprod. Domest. Anim. 49, 448–452.
Plasma antimullerian hormone as a predictor of ovarian antral follicular population in Bos indicus (Nelore) and Bos taurus (Holstein) heifers.Crossref | GoogleScholarGoogle Scholar |

Batista, E. O. S., Guerreiro, B. M., Freitas, B. G., Silva, J. C. B., Vieira, L. M., Ferreira, R. M., Rezende, R. G., Basso, A. C., Lopes, R. N. V. R., Renno, F. P., Souza, A. H., and Baruselli, P. S. (2016). Plasma anti-Müllerian hormone as a predictive endocrine marker to select Bos taurus (Holstein) and Bos indicus (Nelore) calves for in vitro embryo production. Domest. Anim. Endocrinol. 54, 1–9.
Plasma anti-Müllerian hormone as a predictive endocrine marker to select Bos taurus (Holstein) and Bos indicus (Nelore) calves for in vitro embryo production.Crossref | GoogleScholarGoogle Scholar |

Bazer, F. W., and Roberts, R. M. (1983). Biochemical aspects of conceptus–endometrial interactions. J. Exp. Zool. 288, 373–383.
Biochemical aspects of conceptus–endometrial interactions.Crossref | GoogleScholarGoogle Scholar |

Bazer, F. W., and Thatcher, W. W. (2017). Chronicling the discovery of interferon tau. Reproduction 154, F11–F20.
Chronicling the discovery of interferon tau.Crossref | GoogleScholarGoogle Scholar | 28747540PubMed |

Bazer, F. W., Spencer, T. E., and Orr, T. L. (1996). Placental interferons. Am. J. Reprod. Immunol. 35, 297–308.
Placental interferons.Crossref | GoogleScholarGoogle Scholar | 8739445PubMed |

Bazer, F. W., Spencer, T. E., and Orr, T. L. (1997). Interferon tau. A novel pregnancy recognition signal. Am. J. Reprod. Immunol. 37, 412–420.
Interferon tau. A novel pregnancy recognition signal.Crossref | GoogleScholarGoogle Scholar | 9228295PubMed |

Bazer, F. W., Burghardt, R. C., Johnson, G. A., Spencer, T. E., and Wu, G. (2008). Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways. Reprod. Biol. 8, 179–211.
Interferons and progesterone for establishment and maintenance of pregnancy: interactions among novel cell signaling pathways.Crossref | GoogleScholarGoogle Scholar | 19092983PubMed |

Beg, M. A., and Ginther, O. J. (2006). Follicle selection in cattle and horses: role of intrafollicular factors. Reproduction 132, 365–377.
Follicle selection in cattle and horses: role of intrafollicular factors.Crossref | GoogleScholarGoogle Scholar | 16940278PubMed |

Beg, M. A., Bergfelt, D. R., Kot, K., Wiltbank, M. C., and Ginther, O. J. (2001). Follicular-fluid factors and granulosa-cell gene expression associated with follicle deviation in cattle. Biol. Reprod. 64, 432–441.
Follicular-fluid factors and granulosa-cell gene expression associated with follicle deviation in cattle.Crossref | GoogleScholarGoogle Scholar | 11159344PubMed |

Belli, M., and Shimasaki, S. (2018). Molecular aspects and clinical relevance of GDF9 and BMP15 in ovarian function. Vitam. Horm. 107, 317–348.
Molecular aspects and clinical relevance of GDF9 and BMP15 in ovarian function.Crossref | GoogleScholarGoogle Scholar | 29544636PubMed |

Berg, D. K., van Leeuwen, J., Beaumont, S., Berg, M., and Pfeffer, P. L. (2010). Embryo loss in cattle between Days 7 and 16 of pregnancy. Theriogenology 73, 250–260.
Embryo loss in cattle between Days 7 and 16 of pregnancy.Crossref | GoogleScholarGoogle Scholar | 19880168PubMed |

Binelli, M., Thatcher, W. W., Mattos, R., and Baruselli, P. S. (2001). Antiluteolytic strategies to improve fertility in cattle. Theriogenology 56, 1451–1463.
Antiluteolytic strategies to improve fertility in cattle.Crossref | GoogleScholarGoogle Scholar | 11768810PubMed |

Bo, G. A., and Mapletoft, R. J. (2014). Historical perspectives and recent research on superovulation in cattle. Theriogenology 81, 38–48.
Historical perspectives and recent research on superovulation in cattle.Crossref | GoogleScholarGoogle Scholar | 24274408PubMed |

Bott, R. C., Ashley, R. L., Henkes, L. E., Antoniazzi, A. Q., Bruemmer, J. E., Niswender, G. D., Bazer, F. W., Spencer, T. E., Smirnova, N. P., Anthony, R. V., and Hansen, T. R. (2010). Uterine vein infusion of interferon tau (IFNT) extends luteal life span in ewes. Biol. Reprod. 82, 725–735.
Uterine vein infusion of interferon tau (IFNT) extends luteal life span in ewes.Crossref | GoogleScholarGoogle Scholar | 20042537PubMed |

Brooks, K., and Spencer, T. E. (2015). Biological roles of interferon tau (IFNT) and Type 1 IFN receptors in elongation of the ovine conceptus. Biol. Reprod. 92, 47.
Biological roles of interferon tau (IFNT) and Type 1 IFN receptors in elongation of the ovine conceptus.Crossref | GoogleScholarGoogle Scholar | 25505203PubMed |

Buratini, J., and Price, C. A. (2011). Follicular somatic cell factors and follicle development. Reprod. Fertil. Dev. 23, 32–39.
Follicular somatic cell factors and follicle development.Crossref | GoogleScholarGoogle Scholar | 21366978PubMed |

Cardoso, C. J. T., Junior, J. S. O., Kischel, H., da Silva, W. A. L., Arruda, E. D. S., Souza-Cáceres, M. B., de Oliveira, F. A. M., Nogueira, E., Nogueira, G. P., and Melo-Sterza, F. A. (2018). Anti-Müllerian hormone (AMH) as a predictor of antral follicle population in heifers. Anim. Reprod. 15, 12–16.
Anti-Müllerian hormone (AMH) as a predictor of antral follicle population in heifers.Crossref | GoogleScholarGoogle Scholar |

Carter, A. S. (2016). Anti-Mullerian hormone as a marker of oocyte quantity, developmental potential, and fetal sex. Ph.D. Thesis, The University of Ontario, Guelph, Canada.

Center, K., Dixon, D., Looney, C., and Rorie, R. (2018). Anti-Mullerian hormone and follicle counts as predictors of superovulatory response and embryo production in beef cattle. Adv. Reprod. Sci. 6, 22–33.
Anti-Mullerian hormone and follicle counts as predictors of superovulatory response and embryo production in beef cattle.Crossref | GoogleScholarGoogle Scholar |

Chen, H., Liu, C., Jiang, H., Gao, Y., Xu, M., Wang, J., Liu, S., Fu, Y., Sun, X., Xu, J., Dai, L., and Zhang, J. (2017). Regulatory role of miRNA-375 in expression of BMP15/GDF9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells. Cell. Physiol. Biochem. 41, 439–450.
Regulatory role of miRNA-375 in expression of BMP15/GDF9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells.Crossref | GoogleScholarGoogle Scholar | 28214889PubMed |

da Cunha, E. V., Melo, L. R. F., Sousa, G. B., Araujo, V. R., Vasconcelos, G. L., Silva, A. W. B., and Silva, J. R. V. (2018). Effect of bone morphogenetic proteins 2 and 4 on survival and development of bovine secondary follicles cultured in vitro. Theriogenology 110, 44–51.
Effect of bone morphogenetic proteins 2 and 4 on survival and development of bovine secondary follicles cultured in vitro.Crossref | GoogleScholarGoogle Scholar | 29331831PubMed |

Crawford, J. L., and McNatty, K. P. (2012). The ratio of growth differentiation factor 9:bone morphogenetic protein 15 mRNA expression is tightly co-regulated and differs between species over a wide range of ovulation rates. Mol. Cell. Endocrinol. 348, 339–343.
The ratio of growth differentiation factor 9:bone morphogenetic protein 15 mRNA expression is tightly co-regulated and differs between species over a wide range of ovulation rates.Crossref | GoogleScholarGoogle Scholar | 21970812PubMed |

Diskin, M. G., and Morris, D. G. (2008). Embryonic and early foetal losses in cattle and other ruminants. Reprod. Domest. Anim. 43, 260–267.
Embryonic and early foetal losses in cattle and other ruminants.Crossref | GoogleScholarGoogle Scholar | 18638133PubMed |

Diskin, M. G., Parr, M. H., and Morris, D. G. (2012). Embryo death in cattle: an update. Reprod. Fertil. Dev. 24, 244–251.
Embryo death in cattle: an update.Crossref | GoogleScholarGoogle Scholar |

Diskin, M. G., Waters, S. M., Parr, M. H., and Kenny, D. A. (2016). Pregnancy losses in cattle: potential for improvement. Reprod. Fertil. Dev. 28, 83–93.
Pregnancy losses in cattle: potential for improvement.Crossref | GoogleScholarGoogle Scholar | 27062877PubMed |

Durlinger, A. L. L., Kramer, P., Karels, B., De Jong, F. H., Uilenbroek, J. T. J., Grootegoed, J. A., and Themmen, A. P. N. (1999). Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology 140, 5789–5796.
Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary.Crossref | GoogleScholarGoogle Scholar |

Durlinger, A. L. L., Gruijters, M. J. G., Kramer, P., Karels, B., Kumar, T. R., Matzuk, M. M., Rose, U. M., De Jong, F. H., Uilenbroek, J. T. J., Grootegoed, J. A., and Themmen, A. P. N. (2001). Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology 142, 4891–4899.
Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary.Crossref | GoogleScholarGoogle Scholar |

Durlinger, A. L., Visser, J. A., and Themmen, A. P. (2002). Regulation of ovarian function: the role of anti-Müllerian hormone. Reproduction 124, 601–609.
Regulation of ovarian function: the role of anti-Müllerian hormone.Crossref | GoogleScholarGoogle Scholar | 12416998PubMed |

Eisler, M. C., Lee, M. R. F., Tarlton, J. F., Martin, G. B., Beddington, J., Dungait, J. A. J., Greathead, H., Liu, J., Mathew, S., Miller, H., Misselbrook, T., Murray, P., Vinod, V. K., Van Saun, R., and Winter, M. (2014). Steps to sustainable livestock. Nature 507, 32–34.
Steps to sustainable livestock.Crossref | GoogleScholarGoogle Scholar | 24605375PubMed |

Elvin, J. A., Yan, C., and Matzuk, M. M. (2000). Oocyte-expressed TGF-β superfamily members in female fertility. Mol. Cell. Endocrinol. 159, 1–5.
Oocyte-expressed TGF-β superfamily members in female fertility.Crossref | GoogleScholarGoogle Scholar | 10687846PubMed |

Emond, V., Asselin, E., Fortier, M. A., Murphy, B. D., and Lambert, R. D. (2000). Interferon-tau stimulates granulocyte–macrophage colony-stimulating factor gene expression in bovine lymphocytes and endometrial stromal cells. Biol. Reprod. 62, 1728–1737.
Interferon-tau stimulates granulocyte–macrophage colony-stimulating factor gene expression in bovine lymphocytes and endometrial stromal cells.Crossref | GoogleScholarGoogle Scholar | 10819777PubMed |

Evans, A. C. O., and Fortune, J. E. (1997). Selection of the dominant follicle in cattle occurs in the absence of differences in the expression of messenger ribonucleic acid for gonadotropin receptors. Endocrinology 138, 2963–2971.
Selection of the dominant follicle in cattle occurs in the absence of differences in the expression of messenger ribonucleic acid for gonadotropin receptors.Crossref | GoogleScholarGoogle Scholar |

Ezashi, T., and Imakawa, K. (2017). Transcriptional control of IFNT expression. Reproduction 154, F21–F31.
Transcriptional control of IFNT expression.Crossref | GoogleScholarGoogle Scholar | 28982936PubMed |

Farin, C. E., Imakawa, K., and Roberts, R. M. (1989). In situ localization of mRNA for the interferon, ovine trophoblast protein-1, during early embryonic development of the sheep. Mol. Endocrinol. 3, 1099–1107.
In situ localization of mRNA for the interferon, ovine trophoblast protein-1, during early embryonic development of the sheep.Crossref | GoogleScholarGoogle Scholar | 2797003PubMed |

Foote, R. H. (1993). Harvesting and utilizing bull sperm power for maximal genetic progress through artificial insemination. Reprod. Domest. Anim. 28, 361–373.
Harvesting and utilizing bull sperm power for maximal genetic progress through artificial insemination.Crossref | GoogleScholarGoogle Scholar |

Foote, R. H. (1996). Review: dairy cattle reproductive physiology research and management – past progress and future prospects. J. Dairy Sci. 79, 980–990.
Review: dairy cattle reproductive physiology research and management – past progress and future prospects.Crossref | GoogleScholarGoogle Scholar | 8827461PubMed |

Foote, R. H. (1999a). Artificial insemination from its origins up to today. In ‘Proceedings of the International Symposium: From the first artificial insemination to the modern reproduction biotechnologies: traditional ways and new frontiers in animal production’, 8–9 October 1999, Reggio Emilia, Italy. (Eds V. Russo, S. Dall’Olio, and L. Fontanesi.) pp. 23–67.

Foote, R. H. (1999b). Development of reproductive biotechnologies in domestic animals from artificial insemination to cloning: a perspective. Cloning 1, 133–142.
Development of reproductive biotechnologies in domestic animals from artificial insemination to cloning: a perspective.Crossref | GoogleScholarGoogle Scholar | 16218812PubMed |

Foote, R. H. (2002). The history of artificial insemination: selected notes and notables. J. Anim. Sci. 80, 1–10.
The history of artificial insemination: selected notes and notables.Crossref | GoogleScholarGoogle Scholar |

Forde, N., and Lonergan, P. (2012). Transcriptomic analysis of the bovine endometrium: what is required to establish uterine receptivity to implantation in cattle? J. Reprod. Dev. 58, 189–195.
Transcriptomic analysis of the bovine endometrium: what is required to establish uterine receptivity to implantation in cattle?Crossref | GoogleScholarGoogle Scholar | 22738902PubMed |

Forde, N., and Lonergan, P. (2017). Interferon-tau and fertility in ruminants. Reproduction 154, F33–F43.
Interferon-tau and fertility in ruminants.Crossref | GoogleScholarGoogle Scholar | 28887326PubMed |

Forde, N., Beltman, M. E., Duffy, G. B., Duffy, P., Mehta, J. P., O’Gaora, P., Roche, J. F., Lonergan, P., and Crowe, M. A. (2011). Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation. Biol. Reprod. 84, 266–278.
Changes in the endometrial transcriptome during the bovine estrous cycle: effect of low circulating progesterone and consequences for conceptus elongation.Crossref | GoogleScholarGoogle Scholar | 20881316PubMed |

Fortune, J. E., Rivera, G. M., Evans, A. C., and Turzillo, A. M. (2001). Differentiation of dominant versus subordinate follicles in cattle. Biol. Reprod. 65, 648–654.
Differentiation of dominant versus subordinate follicles in cattle.Crossref | GoogleScholarGoogle Scholar | 11514324PubMed |

Garcia-Guerra, A., Motta, J. C. L., Melo, L. F., Kirkpatrick, B. W., and Wiltbank, M. C. (2017). Ovulation rate, antral follicle count, and circulating anti-Müllerian hormone in Trio allele carriers, a novel high fecundity bovine genotype. Theriogenology 101, 81–90.
Ovulation rate, antral follicle count, and circulating anti-Müllerian hormone in Trio allele carriers, a novel high fecundity bovine genotype.Crossref | GoogleScholarGoogle Scholar | 28708520PubMed |

Garcia-Guerra, A., Wiltbank, M. C., Battista, S. E., Kirkpatrick, B. R., and Sartori, R. (2018). Mechanisms regulating follicle selection in ruminants: lessons learned from multiple ovulation models. Anim. Reprod. 15, 660–679.
Mechanisms regulating follicle selection in ruminants: lessons learned from multiple ovulation models.Crossref | GoogleScholarGoogle Scholar |

Gasperin, B. G., Ferreira, R., Rovani, M. T., Bordignon, V., Duggavathi, R., Buratini, J., Oliveira, J. F. C., and Goncalves, P. B. D. (2014). Expression of receptors for BMP15 is differentially regulated in dominant and subordinate follicles during follicle deviation in cattle. Anim. Reprod. Sci. 144, 72–78.
Expression of receptors for BMP15 is differentially regulated in dominant and subordinate follicles during follicle deviation in cattle.Crossref | GoogleScholarGoogle Scholar | 24388700PubMed |

Glister, C., Kemp, C. F., and Knight, P. G. (2004). Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction 127, 239–254.
Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4, -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin.Crossref | GoogleScholarGoogle Scholar | 15056790PubMed |

Glister, C., Satchell, L., and Knight, P. G. (2011). Granulosal and thecal expression of bone morphogenetic protein- and activin-binding protein mRNA transcripts during bovine follicle development and factors modulating their expression in vitro. Reproduction 142, 581–591.
Granulosal and thecal expression of bone morphogenetic protein- and activin-binding protein mRNA transcripts during bovine follicle development and factors modulating their expression in vitro.Crossref | GoogleScholarGoogle Scholar | 21821720PubMed |

Gobikrushanth, M., Dutra, P. A., Bruinj, T. C., Colazo, M. G., Butler, S. T., and Ambrose, D. J. (2017). Repeatability of antral follicle counts and anti-Müllerian hormone and their associations determined at an unknown stage of follicular growth and an expected day of follicular wave emergence in dairy cows. Theriogenology 92, 90–94.
Repeatability of antral follicle counts and anti-Müllerian hormone and their associations determined at an unknown stage of follicular growth and an expected day of follicular wave emergence in dairy cows.Crossref | GoogleScholarGoogle Scholar | 28237349PubMed |

Green, J. C., Okamura, C. S., Poock, S. P., and Lucy, M. C. (2010). Measurement of interferon-tau (IFN-τ) stimulated gene expression in blood leukocytes for pregnancy diagnosis within 18–20 d after insemination in dairy cattle. Anim. Reprod. Sci. 121, 24–33.
Measurement of interferon-tau (IFN-τ) stimulated gene expression in blood leukocytes for pregnancy diagnosis within 18–20 d after insemination in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 20554404PubMed |

Grigoletto, L., Mattos, E. C., Baldi, F., Eler, J. P., Baruselli, P., and Ferraz, J. B. S. (2018). Genome-wide association study for Anti-Müllerian hormone in Nellore cattle. In ‘Proceedings of the 11th World Congress on Genetics Applied to Livestock Production, Biology, Reproduction’, 10–16 February 2018, Auckland, New Zealand. p. 290.

Gruijters, M. J. G., Visser, J. A., Durlinger, A. L. L., and Themmen, A. P. N. (2003). Anti-Müllerian hormone and its role in ovarian function. Mol. Cell. Endocrinol. 211, 85–90.
Anti-Müllerian hormone and its role in ovarian function.Crossref | GoogleScholarGoogle Scholar |

Guerreiro, B. M., Batista, E. O. S., Vieira, L. M., Sá Filho, M. F., Rodrigues, C. A., Netto, A. C., Silveira, C. R. A., Bayeux, B. M., Dias, E. A. R., Monteiro, F. M., Accorsi, M., Lopes, R. N. V. R., and Baruselli, P. S. (2014). Plasma anti-Mullerian hormone: an endocrine marker for in vitro embryo production from Bos taurus and Bos indicus donors. Domest. Anim. Endocrinol. 49, 96–104.
Plasma anti-Mullerian hormone: an endocrine marker for in vitro embryo production from Bos taurus and Bos indicus donors.Crossref | GoogleScholarGoogle Scholar | 25136816PubMed |

Hansen, P. J. (2002). Embryonic mortality in cattle from the embryo perspective. J. Anim. Sci. 80, E33–E44.
Embryonic mortality in cattle from the embryo perspective.Crossref | GoogleScholarGoogle Scholar |

Hansen, T. R., Henkes, L. K., Ashley, R. L., Bott, R. C., Antoniazzi, A. Q., and Han, H. (2010). Endocrine actions of interferon-tau in ruminants. Soc. Reprod. Fertil. Suppl. 67, 325–340.
| 21755682PubMed |

Hansen, T. R., Sinedino, L. D. P., and Spencer, T. E. (2017). Paracrine and endocrine actions of interferon tau (IFNT). Reproduction 154, F45–F59.
Paracrine and endocrine actions of interferon tau (IFNT).Crossref | GoogleScholarGoogle Scholar | 28982937PubMed |

Haq, I. U., Han, Y., Ali, T., Wang, Y., Gao, H., Lin, L., Wu, Y., Wu, S., and Zeng, S. (2016). Expression of interferon-stimulated gene ISG15 and ubiquitination enzymes is upregulated in peripheral blood monocyte during early pregnancy in dairy cattle. Reprod. Biol. 16, 255–260.
Expression of interferon-stimulated gene ISG15 and ubiquitination enzymes is upregulated in peripheral blood monocyte during early pregnancy in dairy cattle.Crossref | GoogleScholarGoogle Scholar | 27802914PubMed |

Hasler, J. F. (2014). Forty years of embryo transfer in cattle: a review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces. Theriogenology 81, 152–169.
Forty years of embryo transfer in cattle: a review focusing on the journal Theriogenology, the growth of the industry in North America, and personal reminisces.Crossref | GoogleScholarGoogle Scholar | 24274419PubMed |

Hayes, E., Kushnir, V., Ma, X., Biswas, A., Prizant, H., Gleicher, N., and Sen, A. (2016). Intra-cellular mechanism of anti-Müllerian hormone (AMH) in regulation of follicular development. Mol. Cell. Endocrinol. 433, 56–65.
Intra-cellular mechanism of anti-Müllerian hormone (AMH) in regulation of follicular development.Crossref | GoogleScholarGoogle Scholar | 27235859PubMed |

Heath, D. A., Pitman, J. L., and McNatty, K. P. (2017). Molecular forms of ruminant BMP15 and GDF9 and putative interactions with receptors. Reproduction 154, 521–534.
Molecular forms of ruminant BMP15 and GDF9 and putative interactions with receptors.Crossref | GoogleScholarGoogle Scholar | 28733348PubMed |

Herrero, M., Havlík, P., Valin, H., Notenbaert, A., Rufino, M. C., Thornton, P. K., Blummel, M., Weiss, F., Grace, D., and Obersteiner, M. (2013). Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems. Proc. Natl Acad. Sci. USA 110, 20888–20893.
Biomass use, production, feed efficiencies, and greenhouse gas emissions from global livestock systems.Crossref | GoogleScholarGoogle Scholar | 24344273PubMed |

Hinck, A. P., Mueller, T. D., and Springer, T. A. (2016). Structural biology and evolution of the TGF-β family. Cold Spring Harb. Perspect. Biol. 8, a022103.
Structural biology and evolution of the TGF-β family.Crossref | GoogleScholarGoogle Scholar | 27638177PubMed |

Hosoe, M., Kaneyama, K., Ushizawa, K., Hayashi, K., and Takahashi, T. (2011). Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries. Reprod. Biol. Endocrinol. 9, 33.
Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries.Crossref | GoogleScholarGoogle Scholar | 21401961PubMed |

Hue, I., Dufort, I., Carvalho, A. V., Laloe, D., Peynot, N., Degrelle, S. E., Viebahn, C., and Sirard, M. A. (2019). Different pre-implantation phenotypes of bovine blastocysts produced in vitro. Reproduction 157, 163–178.
Different pre-implantation phenotypes of bovine blastocysts produced in vitro.Crossref | GoogleScholarGoogle Scholar |

Humblot, P. (2001). Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality in ruminants. Theriogenology 56, 1417–1433.
Use of pregnancy specific proteins and progesterone assays to monitor pregnancy and determine the timing, frequencies and sources of embryonic mortality in ruminants.Crossref | GoogleScholarGoogle Scholar | 11768808PubMed |

Hussein, T. S., Froiland, D. A., Amato, F., Thompson, J. G., and Gilchrist, R. B. (2005). Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci. 118, 5257–5268.
Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins.Crossref | GoogleScholarGoogle Scholar | 16263764PubMed |

Hussein, T. S., Thompson, J. G., and Gilchrist, R. B. (2006). Oocyte-secreted factors enhance oocyte developmental competence. Dev. Biol. 296, 514–521.
Oocyte-secreted factors enhance oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 16854407PubMed |

Hussein, T. S., Sutton-McDowall, M. L., Gilchrist, R. B., and Thompson, J. G. (2011). Temporal effects of exogenous oocyte-secreted factors on bovine oocyte developmental competence during IVM. Reprod. Fertil. Dev. 23, 576–584.
Temporal effects of exogenous oocyte-secreted factors on bovine oocyte developmental competence during IVM.Crossref | GoogleScholarGoogle Scholar | 21557924PubMed |

Ilha, G. F., Rovani, M. T., Gasperin, B. G., Ferreira, R., de Macedo, M. P., Neto, O. A., Duggavathi, R., Bordignon, V., and Goncalves, P. B. D. (2016). Regulation of anti-Müllerian hormone and its receptor expression around follicle deviation in cattle. Reprod. Domest. Anim. 51, 188–194.
Regulation of anti-Müllerian hormone and its receptor expression around follicle deviation in cattle.Crossref | GoogleScholarGoogle Scholar | 26815645PubMed |

Imakawa, K., Anthony, R. V., Kazemi, M., Marotti, K. R., Polites, G., and Roberts, R. P. (1987). Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm. Nature 330, 377–379.
Interferon-like sequence of ovine trophoblast protein secreted by embryonic trophectoderm.Crossref | GoogleScholarGoogle Scholar | 2446135PubMed |

Imakawa, K., Hansen, T. R., Malathy, P. V., Anthony, R. V., Polites, H. G., Marotti, K. R., and Roberts, R. M. (1989). Molecular cloning and characterization of complementary deoxyribonucleic acids corresponding to bovine trophoblast protein-1: a comparison with ovine trophoblast protein-1 and bovine interferon-alpha II. Mol. Endocrinol. 3, 127–139.
Molecular cloning and characterization of complementary deoxyribonucleic acids corresponding to bovine trophoblast protein-1: a comparison with ovine trophoblast protein-1 and bovine interferon-alpha II.Crossref | GoogleScholarGoogle Scholar | 2521687PubMed |

Imakawa, K., Bai, R., Fujiwara, H., Ideta, A., Aoyagi, Y., and Kusama, K. (2017). Continuous model of conceptus implantation to the maternal endometrium. J. Endocrinol. 233, R53–R65.
Continuous model of conceptus implantation to the maternal endometrium.Crossref | GoogleScholarGoogle Scholar | 28213399PubMed |

Imakawa, K., Bai, R., and Kusama, K. (2018). Integration of molecules to construct the processes of conceptus implantation to the maternal endometrium. J. Anim. Sci. 96, 3009–3021.
Integration of molecules to construct the processes of conceptus implantation to the maternal endometrium.Crossref | GoogleScholarGoogle Scholar | 29554266PubMed |

Ingman, W. V., and Robertson, S. A. (2002). Defining the actions of transforming growth factor beta in reproduction. BioEssays 24, 904–914.
Defining the actions of transforming growth factor beta in reproduction.Crossref | GoogleScholarGoogle Scholar | 12325123PubMed |

Ireland, J. J., Ward, F., Jimenez-Krassel, F., Ireland, J. L. H., Smith, G. W., Lonergan, P., and Evans, A. C. O. (2007). Follicle numbers are highly repeatable within individual animals but are inversely correlated with FSH concentrations and the proportion of good-quality embryos after ovarian stimulation in cattle. Hum. Reprod. 22, 1687–1695.
Follicle numbers are highly repeatable within individual animals but are inversely correlated with FSH concentrations and the proportion of good-quality embryos after ovarian stimulation in cattle.Crossref | GoogleScholarGoogle Scholar | 17468258PubMed |

Ireland, J. L. H., Scheetz, D., Jimenez-Krassel, F., Themmen, A. P. N., Ward, F., Lonergan, P., Smith, G. W., Perez, G. I., Evans, A. C. O., and Ireland, J. J. (2008). Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle. Biol. Reprod. 79, 1219–1225.
Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle.Crossref | GoogleScholarGoogle Scholar |

Ireland, J. J., Smith, G. W., Scheetz, D., Jimenez-Krassel, F., Folger, J. K., Ireland, J. L. H., Mossa, F., Lonergan, P., and Evans, A. C. O. (2011). Does size matter in females? An overview of the impact of the high variation in the ovarian reserve on ovarian function and fertility, utility of anti-Müllerian hormone as a diagnostic marker for fertility and causes of variation in the ovarian reserve in cattle. Reprod. Fertil. Dev. 23, 1–14.
Does size matter in females? An overview of the impact of the high variation in the ovarian reserve on ovarian function and fertility, utility of anti-Müllerian hormone as a diagnostic marker for fertility and causes of variation in the ovarian reserve in cattle.Crossref | GoogleScholarGoogle Scholar | 21366975PubMed |

Jimenez-Krassel, F., Scheetz, D. M., Neuder, L. M., Ireland, J. L. H., Pursley, J. R., Smith, G. W., Tempelman, R. J., Ferris, T., Roudebush, W. E., Mossa, F., Lonergan, P., Evans, A. C. O., and Ireland, J. J. (2015). Concentration of anti-Müllerian hormone in dairy heifers is positively associated with productive herd life. J. Dairy Sci. 98, 3036–3045.
Concentration of anti-Müllerian hormone in dairy heifers is positively associated with productive herd life.Crossref | GoogleScholarGoogle Scholar | 25726106PubMed |

Jones, R. L., Stoikos, C., Findlay, J. K., and Salamonsen, L. A. (2006). TGF-β superfamily expression and actions in the endometrium and placenta. Reproduction 132, 217–232.
TGF-β superfamily expression and actions in the endometrium and placenta.Crossref | GoogleScholarGoogle Scholar | 16885531PubMed |

Josso, N. (2008). Porfessor Alfred Jost: the builder of modern sex differentiation. Sex Dev. 2, 55–63.
Porfessor Alfred Jost: the builder of modern sex differentiation.Crossref | GoogleScholarGoogle Scholar | 18577872PubMed |

Josso, N., di Clemente, N., and Gouedard, L. (2001). Anti-Müllerian hormone and its receptors. Mol. Cell. Endocrinol. 179, 25–32.
Anti-Müllerian hormone and its receptors.Crossref | GoogleScholarGoogle Scholar | 11420127PubMed |

Josso, N., Belville, C., di Clemente, N., and Picard, J. Y. (2005). AMH and AMH receptor defects in persistent Müllerian duct syndrome. Hum. Reprod. Update 11, 351–356.
AMH and AMH receptor defects in persistent Müllerian duct syndrome.Crossref | GoogleScholarGoogle Scholar | 15878900PubMed |

Jost, A. (1947). Recherches sur la differenciation sexuelle de l’embryon de lapin. Arch. Anat. Microsc. Morphol. Exp. 36, 217–315.

Juengel, J. L., Hudson, N. L., Heath, D. A., Smith, P., Reader, K. L., Lawrence, S. B., O’Connell, A. R., Laitinen, M. P. E., Cranfield, M., Groome, N. P., Ritvos, O., and McNatty, K. P. (2002). Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol. Reprod. 67, 1777–1789.
Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep.Crossref | GoogleScholarGoogle Scholar | 12444053PubMed |

Juengel, J., Hudson, N., Hamel, K., Berg, M., and McNatty, K. (2007). Both growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) regulate ovulation rate in cattle. Biol. Reprod. 77, 150–151.
Both growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) regulate ovulation rate in cattle.Crossref | GoogleScholarGoogle Scholar |

Juengel, J. L., Hudson, N. L., Berg, M., Hamel, K., Smith, P., Lawrence, S. B., Whiting, L., and McNatty, K. P. (2009). Effects of active immunization against growth differentiation factor 9 and/or bone morphogenetic protein 15 on ovarian function in cattle. Reproduction 138, 107–114.
Effects of active immunization against growth differentiation factor 9 and/or bone morphogenetic protein 15 on ovarian function in cattle.Crossref | GoogleScholarGoogle Scholar | 19439562PubMed |

Keefer, C. L. (2015). Artificial cloning of domestic animals. Proc. Natl Acad. Sci. USA 112, 8874–8878.
Artificial cloning of domestic animals.Crossref | GoogleScholarGoogle Scholar | 26195770PubMed |

Kerbler, T. L., Buhr, M. M., Jordan, L. T., Leslie, K. E., and Walton, J. S. (1997). Relationship between maternal plasma progesterone concentration and interferon-tau synthesis by the conceptus in cattle. Theriogenology 47, 703–714.
Relationship between maternal plasma progesterone concentration and interferon-tau synthesis by the conceptus in cattle.Crossref | GoogleScholarGoogle Scholar | 16728022PubMed |

Khatir, H., Lonergan, P., Touze, J. L., and Mermillod, P. (1998). The characterization of bovine embryos obtained from prepubertal calf oocytes and their viability after non surgical embryo transfer. Theriogenology 50, 1201–1210.
The characterization of bovine embryos obtained from prepubertal calf oocytes and their viability after non surgical embryo transfer.Crossref | GoogleScholarGoogle Scholar | 10734435PubMed |

Kim, M. S., Min, K. S., Seong, H. H., Kim, C. L., Jeon, I. S., Kim, S. W., and Imakawa, K. (2018). Regulation of conceptus interferon-tau gene subtypes expressed in the uterus during the peri-implantation period of cattle. Anim. Reprod. Sci. 190, 39–46.
Regulation of conceptus interferon-tau gene subtypes expressed in the uterus during the peri-implantation period of cattle.Crossref | GoogleScholarGoogle Scholar | 29402638PubMed |

Kim, K. M., Lee, S. J., Yum, S. Y., Kim, H. S., Park, J. H., Lee, J. H., Koo, S. H., Lee, W. W., Lee, W. S., and Jang, G. (2019). Cloned bovine embryonic development derived from interferon tau knockout cells. Reprod. Fertil. Dev. 31, 160.
Cloned bovine embryonic development derived from interferon tau knockout cells.Crossref | GoogleScholarGoogle Scholar |

Kiyma, Z., Kose, M., Atli, M. O., Ozel, C., Hitit, M., Sen, G., Kaya, M., Kaya, M. S., Kurar, E., Kayis, S. A., and Guzeloglu, A. (2016). Investigation of interferon-tau stimulated genes (ISGs) simultaneously in the endometrium, corpus luteum (CL) and peripheral blood leukocytes (PBLs) in the preluteolytic stage of early pregnancy in ewes. Small Rumin. Res. 140, 1–6.
Investigation of interferon-tau stimulated genes (ISGs) simultaneously in the endometrium, corpus luteum (CL) and peripheral blood leukocytes (PBLs) in the preluteolytic stage of early pregnancy in ewes.Crossref | GoogleScholarGoogle Scholar |

Knight, P. G., and Glister, C. (2003). Local roles of TGF-β superfamily members in the control of ovarian follicle development. Anim. Reprod. Sci. 78, 165–183.
Local roles of TGF-β superfamily members in the control of ovarian follicle development.Crossref | GoogleScholarGoogle Scholar | 12818643PubMed |

Knight, P. G., and Glister, C. (2006). TGF-β superfamily members and ovarian follicular development. Reproduction 132, 191–206.
TGF-β superfamily members and ovarian follicular development.Crossref | GoogleScholarGoogle Scholar | 16885529PubMed |

Kunii, H., Koyama, K., Ito, T., Suzuki, T., Balboula, A. Z., Shirozu, T., Bai, H., Nagano, M., Kawahara, M., and Takahashi, M. (2018). Hot topic: pregnancy-induced expression of interferon-stimulated genes in the cervical and vaginal mucosal membranes. J. Dairy Sci. 101, 8396–8400.
Hot topic: pregnancy-induced expression of interferon-stimulated genes in the cervical and vaginal mucosal membranes.Crossref | GoogleScholarGoogle Scholar | 29935833PubMed |

Kusama, K., Bai, R., Nakamura, K., Okada, S., Yasuda, J., and Imakawa, K. (2017). Endometrial factors similarly induced by IFNT2 and IFNTc1 through transcription factor FOXS1. PLoS One 12, e0171858.
Endometrial factors similarly induced by IFNT2 and IFNTc1 through transcription factor FOXS1.Crossref | GoogleScholarGoogle Scholar | 28542608PubMed |

Lee, W. S., Otsuka, F., Moore, R. K., and Shimasaki, S. (2001). Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat. Biol. Reprod. 65, 994–999.
Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat.Crossref | GoogleScholarGoogle Scholar | 11566718PubMed |

Lee, J., Stanley, J. A., McCracken, J. A., Banu, S. K., and Arosh, J. A. (2014). Intrauterine coadministration of ERK1/2 inhibitor U0126 inhibits interferon TAU action in the endometrium and restores luteolytic PGF2alpha pulses in sheep. Biol. Reprod. 91, 1–9.

Li, Q., Agno, J. E., Edson, M. A., Nagaraja, A. K., Nagashima, T., and Matzuk, M. M. (2011). Transforming growth factor β receptor Type 1 is essential for female reproductive tract integrity and function. PLOS Genetics 7, e1002320.
Transforming growth factor β receptor Type 1 is essential for female reproductive tract integrity and function.Crossref | GoogleScholarGoogle Scholar | 22028666PubMed |

Lonergan, P. (2011). Influence of progesterone on oocyte quality and embryo development in cows. Theriogenology 76, 1594–1601.
Influence of progesterone on oocyte quality and embryo development in cows.Crossref | GoogleScholarGoogle Scholar | 21855985PubMed |

Lonergan, P., and Forde, N. (2014). Maternal–embryo interaction leading up to the initiation of implantation of pregnancy in cattle. Animal 8, 64–69.
Maternal–embryo interaction leading up to the initiation of implantation of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 24679216PubMed |

Lonergan, P., Sanchez, J. M., Mathew, D. J., Passaro, C., and Fair, T. (2019). Embryo development in cattle and interactions with the reproductive tract. Reprod. Fertil. Dev. 31, 118–125.
Embryo development in cattle and interactions with the reproductive tract.Crossref | GoogleScholarGoogle Scholar |

Lucy, M., Green, J., and Poock, S. (2011). Pregnancy determination in cattle: a review of available alternatives. Proc. Appl. Reprod. Strategies Beef Cattle 2011, 367–376.

Maculan, R., Pinto, T. L. C., Moreira, G. M., de Vasconcelos, G. L., Sanches, J. A., Rosa, R. C., Bonfim, R. R., Goncalves, T. deM., and de Souza, J. C. (2018). Anti-Müllerian hormone (AMH), antral follicle count (AFC), external morphometrics and fertility in Tabapuã cows. Anim. Reprod. Sci. 189, 84–92.
Anti-Müllerian hormone (AMH), antral follicle count (AFC), external morphometrics and fertility in Tabapuã cows.Crossref | GoogleScholarGoogle Scholar | 29279199PubMed |

Mamo, S., Mehta, J. P., Forde, N., McGettigan, P., and Lonergan, P. (2012). Conceptus–endometrium crosstalk during maternal recognition of pregnancy in cattle. Biol. Reprod. 87, 6.
Conceptus–endometrium crosstalk during maternal recognition of pregnancy in cattle.Crossref | GoogleScholarGoogle Scholar | 22517619PubMed |

Martal, J., Chene, N., Camous, S., Huynh, L., Lantier, F., Hermier, P., L’Haridon, R., Charpigny, G., Charlier, M., and Chaouat, G. (1997). Recent developments and potentialities for reducing embryo mortality in ruminants: the role of IFN-tau and other cytokines in early pregnancy. Reprod. Fertil. Dev. 9, 355–380.
Recent developments and potentialities for reducing embryo mortality in ruminants: the role of IFN-tau and other cytokines in early pregnancy.Crossref | GoogleScholarGoogle Scholar | 9261883PubMed |

Martal, J. L., Chene, N. M., Huynh, L. P., L’Haridon, R. M., Reinaud, P. B., Guillomot, M. W., Charlier, M. A., and Charpigny, S. Y. (1998). IFN-tau: a novel subtype I IFN1. Structural characteristics, non-ubiquitous expression, structure-function relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities. Biochimie 80, 755–777.
IFN-tau: a novel subtype I IFN1. Structural characteristics, non-ubiquitous expression, structure-function relationships, a pregnancy hormonal embryonic signal and cross-species therapeutic potentialities.Crossref | GoogleScholarGoogle Scholar | 9865498PubMed |

Martinez, M. F., Sanderson, N., Quirke, L. D., Lawrence, S. B., and Juengel, J. L. (2016). Association between antral follicle count and reproductive measures in New Zealand lactating dairy cows maintained in a pasture-based production system. Theriogenology 85, 466–475.
Association between antral follicle count and reproductive measures in New Zealand lactating dairy cows maintained in a pasture-based production system.Crossref | GoogleScholarGoogle Scholar | 26489910PubMed |

Mathew, D. J., Sanchez, J. M., Passaro, C., Charpigny, G., Behura, S. A., Spencer, T. E., and Lonergan, P. (2019). Interferon tau-dependent and independent effects of the bovine conceptus on the endometrial transcriptome. Biol. Reprod. 100, 365–380.
Interferon tau-dependent and independent effects of the bovine conceptus on the endometrial transcriptome.Crossref | GoogleScholarGoogle Scholar | 30203055PubMed |

Matsuyama, S., Kojima, T., Kato, S., and Kimura, K. (2012). Relationship between quantity of IFNT estimated by IFN-stimulated gene expression in peripheral blood mononuclear cells and bovine embryonic mortality after AI or ET. Reprod. Biol. Endocrinol. 10, 21.
Relationship between quantity of IFNT estimated by IFN-stimulated gene expression in peripheral blood mononuclear cells and bovine embryonic mortality after AI or ET.Crossref | GoogleScholarGoogle Scholar | 22439976PubMed |

McNatty, K. P., Moore, L. G., Hudson, N. L., Quirke, L. D., Lawrence, S. B., Reader, K., Hanrahan, J. P., Smith, P., Groome, N. P., Laitinen, M., Ritvos, O., and Juengel, J. L. (2004). The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology. Reproduction 128, 379–386.
The oocyte and its role in regulating ovulation rate: a new paradigm in reproductive biology.Crossref | GoogleScholarGoogle Scholar | 15454632PubMed |

McNatty, K. P., Smith, P., Moore, L. G., Reader, K., Lun, S., Hanrahan, J. P., Groome, N. P., Laitinen, M., Ritvos, O., and Juengel, J. L. (2005). Oocyte-expressed genes affecting ovulation rate. Mol. Cell. Endocrinol. 234, 57–66.
Oocyte-expressed genes affecting ovulation rate.Crossref | GoogleScholarGoogle Scholar | 15836953PubMed |

McNatty, K. P., Lawrence, S., Groome, N. P., Meerasahib, M. F., Hudson, N. L., Whiting, L., Heath, D. A., and Juengel, J. L. (2006). Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants. Reprod. Fertil. Dev. 18, 403–412.
Meat and Livestock Association Plenary Lecture 2005. Oocyte signalling molecules and their effects on reproduction in ruminants.Crossref | GoogleScholarGoogle Scholar | 16737633PubMed |

Meyer, M. D., Hansen, P. J., Thatcher, W. W., Drost, M., Badinga, L., Roberts, R. M., Li, J., Ott, T. L., and Bazer, F. W. (1995). Extension of corpus luteum lifespan and reduction of uterine secretion of prostaglandin F2α of cows in response to recombinant interferon-τ. J. Dairy Sci. 78, 1921–1931.
Extension of corpus luteum lifespan and reduction of uterine secretion of prostaglandin F of cows in response to recombinant interferon-τ.Crossref | GoogleScholarGoogle Scholar | 8550901PubMed |

Monniaux, D. (2016). Driving folliculogenesis by the oocyte–somatic cell dialog: lessons from genetic models. Theriogenology 86, 41–53.
Driving folliculogenesis by the oocyte–somatic cell dialog: lessons from genetic models.Crossref | GoogleScholarGoogle Scholar | 27155734PubMed |

Monniaux, D., Barbey, S., Rico, C., Fabre, S., Gallard, Y., and Larroque, H. (2010a). Anti-Müllerian hormone: a predictive marker of embryo production in cattle? Reprod. Fertil. Dev. 22, 1083–1091.
Anti-Müllerian hormone: a predictive marker of embryo production in cattle?Crossref | GoogleScholarGoogle Scholar | 20797346PubMed |

Monniaux, D., Rico, C., Larroque, H., Dalbies-Tran, R., Medigue, C., Clement, F., and Fabre, S. (2010b). Anti-Müllerian hormone, an endocrine predictor of the response to ovarian stimulation in the bovine species. Gynécol. Obstét. Fertil. 38, 465–470.
Anti-Müllerian hormone, an endocrine predictor of the response to ovarian stimulation in the bovine species.Crossref | GoogleScholarGoogle Scholar | 20580592PubMed |

Monteiro, F. M., Batista, E. O. S., Vieira, L. M., Bayeux, B. M., Accorsi, M., Campanholi, S. P., Dias, E. A. R., Souza, A. H., and Baruselli, P. S. (2017). Beef donor cows with high number of retrieved COC produce more in vitro embryos compared with cows with low number of COC after repeated ovum pick-up sessions. Theriogenology 90, 54–58.
Beef donor cows with high number of retrieved COC produce more in vitro embryos compared with cows with low number of COC after repeated ovum pick-up sessions.Crossref | GoogleScholarGoogle Scholar | 28166988PubMed |

Moraes, J. G. N., Behura, S. K., Geary, T. W., Hansen, P. J., Neibergs, H. L., and Spencer, T. E. (2018). Uterine influences on conceptus development in fertility-classified animals. Proc. Natl Acad. Sci. USA 115, E1749–E1758.
Uterine influences on conceptus development in fertility-classified animals.Crossref | GoogleScholarGoogle Scholar |

Morikawa, M., Derynck, R., and Miyazono, K. (2016). TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb. Perspect. Biol. 8, a021873.
TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology.Crossref | GoogleScholarGoogle Scholar | 27141051PubMed |

Morotti, F., Santos, G. M. G., Junior, C. K., Silva-Santos, K. C., Roso, V. M., and Seneda, M. M. (2017a). Correlation between phenotype, genotype and antral follicle population in beef heifers. Theriogenology 91, 21–26.
Correlation between phenotype, genotype and antral follicle population in beef heifers.Crossref | GoogleScholarGoogle Scholar | 28215682PubMed |

Morotti, F., Zangirolamo, A. F., da Silva, N. C., da Silva, C. B., Rosa, C. O., and Seneda, M. M. (2017b). Antral follicle count in cattle: advantages, challenges, and controversy. Anim. Reprod. 14, 514–520.
Antral follicle count in cattle: advantages, challenges, and controversy.Crossref | GoogleScholarGoogle Scholar |

Morotti, F., Moretti, R., dos Santos, G. M. G., Silva-Santos, K. C., Cerqueira, P. H. R., and Seneda, M. M. (2018). Ovarian follicular dynamics and conception rate in Bos indicus cows with different antral follicle counts subjected to timed artificial insemination. Anim. Reprod. Sci. 188, 170–177.
Ovarian follicular dynamics and conception rate in Bos indicus cows with different antral follicle counts subjected to timed artificial insemination.Crossref | GoogleScholarGoogle Scholar | 29224967PubMed |

Mossa, F., and Ireland, J. J. (2019). Physiology and endocrinology symposium: anti-Müllerian hormone: a biomarker for the ovarian reserve, ovarian function, and fertility in dairy cows. J. Anim. Sci. 97, 1446–1455.
Physiology and endocrinology symposium: anti-Müllerian hormone: a biomarker for the ovarian reserve, ovarian function, and fertility in dairy cows.Crossref | GoogleScholarGoogle Scholar | 30668706PubMed |

Mossa, F., Jimenez-Krassel, F., Scheetz, D., Weber-Nielsen, M., Evans, A. C. O., and Ireland, J. J. (2017). Anti-Müllerian hormone (AMH) and fertility management in agricultural species. Reproduction 154, R1–R11.
Anti-Müllerian hormone (AMH) and fertility management in agricultural species.Crossref | GoogleScholarGoogle Scholar | 28356501PubMed |

Mottershead, D. G., Sugimura, S., Al-Musawi, S. L., Li, J. J., Richani, D., White, M. A., Martin, G. A., Trotta, A. P., Ritter, L. J., Shi, J., Mueller, T. D., Harrison, C. A., and Gilchrist, R. B. (2015). Cumulin, an oocyte-secreted heterodimer of the transforming growth factor-β family, is a potent activator of granulosa cells and improves oocyte quality. J. Biol. Chem. 290, 24007–24020.
Cumulin, an oocyte-secreted heterodimer of the transforming growth factor-β family, is a potent activator of granulosa cells and improves oocyte quality.Crossref | GoogleScholarGoogle Scholar | 26254468PubMed |

Mottet, A., de Haan, C., Falcuccia, A., Tempio, G., Opio, C., and Gerber, P. (2017). Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 14, 1–8.
Livestock: on our plates or eating at our table? A new analysis of the feed/food debate.Crossref | GoogleScholarGoogle Scholar |

Nakamura, K., Kusama, K., Bai, R., Sakurai, T., Isuzugawa, K., Godkin, J. D., Suda, Y., and Imakawa, K. (2016). Induction of IFNT-stimulated genes by conceptus-derived exosomes during the attachment period. PLoS One 11, e0158278.
Induction of IFNT-stimulated genes by conceptus-derived exosomes during the attachment period.Crossref | GoogleScholarGoogle Scholar | 27649071PubMed |

Neira, J. A., Tainturier, D., L’Haridon, R. M., and Martal, J. (2007). Comparative IFN-τ secretion after hatching by bovine blastocysts derived ex vivo and completely produced in vitro. Reprod. Domest. Anim. 42, 68–75.
Comparative IFN-τ secretion after hatching by bovine blastocysts derived ex vivo and completely produced in vitro.Crossref | GoogleScholarGoogle Scholar | 17214777PubMed |

Niswender, G. D., Juengel, J. L., Silva, P. J., Rollyson, M. K., and McIntush, E. W. (2000). Mechanisms controlling the function and life span of the corpus luteum. Physiol. Rev. 80, 1–29.
Mechanisms controlling the function and life span of the corpus luteum.Crossref | GoogleScholarGoogle Scholar | 10617764PubMed |

Otsuka, F., McTavish, K., and Shimasaki, S. (2011). Integral role of GDF-9 and BMP-15 in ovarian function. Mol. Reprod. Dev. 78, 9–21.
Integral role of GDF-9 and BMP-15 in ovarian function.Crossref | GoogleScholarGoogle Scholar | 21226076PubMed |

Ott, T. L., and Gifford, C. A. (2010). Effects of early conceptus signals on circulating immune cells: lessons from domestic animals. Am. J. Reprod. Immunol. 64, 245–254.
Effects of early conceptus signals on circulating immune cells: lessons from domestic animals.Crossref | GoogleScholarGoogle Scholar | 20738264PubMed |

Palma, G. A., Tortonese, D. J., and Sinowatz, F. (2001). Developmental capacity in vitro of prepubertal oocytes. Anat. Histol. Embryol. 30, 295–300.
Developmental capacity in vitro of prepubertal oocytes.Crossref | GoogleScholarGoogle Scholar | 11688740PubMed |

Parr, M. H., Scully, S., Lonergan, P., Evans, A. C. O., Crowe, M. A., and Diskin, M. G. (2017). Establishment of critical timing of progesterone supplementation on corpus luteum and embryo development in beef heifers. Anim. Reprod. Sci. 180, 1–9.
Establishment of critical timing of progesterone supplementation on corpus luteum and embryo development in beef heifers.Crossref | GoogleScholarGoogle Scholar | 28258785PubMed |

Passaro, C., Tutt, D., Mathew, D. J., Sanchez, J. M., Browne, J. A., Boe-Hansen, G. B., Fair, T., and Lonergan, P. (2018). Blastocyst-induced changes in the bovine endometrial transcriptome. Reproduction 156, 219–229.
Blastocyst-induced changes in the bovine endometrial transcriptome.Crossref | GoogleScholarGoogle Scholar | 30021913PubMed |

Paulini, F., and Melo, E. O. (2011). The role of oocyte-secreted factors GDF9 and BMP15 in follicular development and oogenesis. Reprod. Domest. Anim. 46, 354–361.
The role of oocyte-secreted factors GDF9 and BMP15 in follicular development and oogenesis.Crossref | GoogleScholarGoogle Scholar | 21198974PubMed |

Pennetier, S., Uzbekova, S., Perreau, C., Papillier, P., Mermillod, P., and Dalbies-Tran, R. (2004). Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15, and VASA in adult bovine tissues, oocytes, and preimplantation embryos. Biol. Reprod. 71, 1359–1366.
Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15, and VASA in adult bovine tissues, oocytes, and preimplantation embryos.Crossref | GoogleScholarGoogle Scholar | 15189828PubMed |

Persani, L., Rossetti, R., Di Pasquale, E., Cacciatore, C., and Fabre, S. (2014). The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders. Hum. Reprod. Update 20, 869–883.
The fundamental role of bone morphogenetic protein 15 in ovarian function and its involvement in female fertility disorders.Crossref | GoogleScholarGoogle Scholar | 24980253PubMed |

Pierre, A., Estienne, A., Racine, C., Picard, J. Y., Fanchin, R., Lahoz, B., Alabart, J. L., Folch, J., Jarrier, P., Fabre, S., Monniaux, D., and di Clemente, N. (2016). The bone morphogenetic protein 15 up-regulates the anti-Müllerian hormone receptor expression in granulosa cells. J. Clin. Endocrinol. Metab. 101, 2602–2611.
The bone morphogenetic protein 15 up-regulates the anti-Müllerian hormone receptor expression in granulosa cells.Crossref | GoogleScholarGoogle Scholar | 27070094PubMed |

Pontzer, C. H., Bazer, F. W., and Johnson, H. M. (1991). Antipoliferative activity of a pregnancy recognition hormone, ovine trophoblast protein-1. Cancer Res. 51, 5304–5307.
| 1913653PubMed |

Poole, D. H., Ocon-Grove, O. M., and Johnson, A. L. (2016). Anti-Müllerian hormone (AMH) receptor type II expression and AMH activity in bovine granulosa cells. Theriogenology 86, 1353–1360.
Anti-Müllerian hormone (AMH) receptor type II expression and AMH activity in bovine granulosa cells.Crossref | GoogleScholarGoogle Scholar | 27268296PubMed |

Revel, F., Mermillod, P., Peynot, N., Renard, J. P., and Heyman, Y. (1995). Low developmental capacity of in vitro matured and fertilized oocytes from calves compared with that of cows. J. Reprod. Fertil. 103, 115–120.
Low developmental capacity of in vitro matured and fertilized oocytes from calves compared with that of cows.Crossref | GoogleScholarGoogle Scholar | 7707286PubMed |

Ribeiro, E. S., Bisinotto, R. S., Lima, F. S., Greco, L. F., Morrison, A., Kumar, A., Thatcher, W. W., and Santos, J. E. O. (2014a). Plasma anti-Müllerian hormone in adult dairy cows and associations with fertility. J. Dairy Sci. 97, 6888–6900.
Plasma anti-Müllerian hormone in adult dairy cows and associations with fertility.Crossref | GoogleScholarGoogle Scholar | 25173464PubMed |

Ribeiro, E. S., Bruno, R. G. S., Farias, A. M., Hernandez-Rivera, J. A., Gomes, G. C., Surjus, R., Becker, L. F. V., Birt, A., Ott, T. L., Branen, J. R., Sasser, R. G., Keisler, D. H., Thatcher, W. W., Bilby, T. R., and Santos, J. E. P. (2014b). Low doses of bovine somatotropin enhance conceptus development and fertility in lactating dairy cows. Biol. Reprod. 90, 10.
Low doses of bovine somatotropin enhance conceptus development and fertility in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 24285716PubMed |

Rico, C., Drouilhet, L., Salvetti, P., Dalbies-Tran, R., Jarrier, P., Touze, J. L., Pillet, E., Ponsart, C., Fabre, S., and Monniaux, D. (2012). Determination of anti-Müllerian hormone concentrations in blood as a tool to select Holstein donor cows for embryo production: from the laboratory to the farm. Reprod. Fertil. Dev. 24, 932–944.
Determination of anti-Müllerian hormone concentrations in blood as a tool to select Holstein donor cows for embryo production: from the laboratory to the farm.Crossref | GoogleScholarGoogle Scholar | 22935154PubMed |

Roberts, R. M. (1989). Conceptus interferons and maternal recognition of pregnancy. Biol. Reprod. 40, 449–452.
Conceptus interferons and maternal recognition of pregnancy.Crossref | GoogleScholarGoogle Scholar | 2667647PubMed |

Roberts, R. M. (2007). Interferon-Tau, a Type 1 interferon involved in maternal recognition of pregnancy. Cytokine Growth Factor Rev. 18, 403–408.
Interferon-Tau, a Type 1 interferon involved in maternal recognition of pregnancy.Crossref | GoogleScholarGoogle Scholar | 17662642PubMed |

Roberts, R. M. (2017). 30 years from the molecular cloning of interferon-tau. Reproduction 154, E1–E2.
30 years from the molecular cloning of interferon-tau.Crossref | GoogleScholarGoogle Scholar | 29025972PubMed |

Roberts, R. M., Cross, J. C., and Leaman, D. W. (1992). Interferons as hormones of pregnancy. Endocr. Rev. 13, 432–452.
| 1385108PubMed |

Rossi, R. O. D. S., Costa, J. J. N., Silva, A. V. B., Saraiva, M. V. A., Van den Hurk, R., and Silva, J. R. V. (2016). The bone morphogenetic protein system and the regulation of ovarian follicle development in mammals. Zygote 24, 1–7.
The bone morphogenetic protein system and the regulation of ovarian follicle development in mammals.Crossref | GoogleScholarGoogle Scholar |

Sakumoto, R., Iga, K., Hayashi, K.-G., Fujii, S., Kanahara, H., Hosoe, M., and Furusawa, T. (2018). Gene expression of CCL8 and CXCL10 in peripheral blood leukocytes during early pregnancy in cows. J. Anim. Sci. Biotechnol. 9, 46.
Gene expression of CCL8 and CXCL10 in peripheral blood leukocytes during early pregnancy in cows.Crossref | GoogleScholarGoogle Scholar | 29946459PubMed |

Sakurai, T., Sakamoto, A., Muroi, Y., Bai, H., Nagaoka, K., Tamura, K., Takahashi, T., Hashizume, K., Sakatani, M., Takahashi, M., Godkin, J. D., and Imakawa, K. (2009). Induction of endogenous interferon tau gene transcription by CDX2 and high acetylation in bovine nontrophoblast cells. Biol. Reprod. 80, 1223–1231.
Induction of endogenous interferon tau gene transcription by CDX2 and high acetylation in bovine nontrophoblast cells.Crossref | GoogleScholarGoogle Scholar | 19211809PubMed |

Sakurai, T., Nakagawa, S., Kim, M. S., Bai, H., Bai, R., Li, J., Min, K. S., Ideta, A., Aoyagi, Y., and Imakawa, K. (2013). Transcriptional regulation of two conceptus interferon tau genes expressed in Japanese Black cattle during peri-implantation period. PLoS One 8, e80427.
Transcriptional regulation of two conceptus interferon tau genes expressed in Japanese Black cattle during peri-implantation period.Crossref | GoogleScholarGoogle Scholar | 24348910PubMed |

Salter, A. M. (2017). Improving the sustainability of global meat and milk production. Proc. Nutr. Soc. 76, 22–27.
Improving the sustainability of global meat and milk production.Crossref | GoogleScholarGoogle Scholar | 27417542PubMed |

Sanchez, J. M., Mathew, D. J., Passaro, C., Fair, T., and Lonergan, P. (2018). Embryonic maternal interaction in cattle and its relationship with fertility. Reprod. Domest. Anim. 53, 20–27.
Embryonic maternal interaction in cattle and its relationship with fertility.Crossref | GoogleScholarGoogle Scholar | 30238655PubMed |

Sandra, O., Charpigny, G., Galio, L., and Hue, I. (2017). Preattachment embryos of domestic animals: insights into development and paracrine secretions. Annu. Rev. Anim. Biosci. 5, 205–228.
Preattachment embryos of domestic animals: insights into development and paracrine secretions.Crossref | GoogleScholarGoogle Scholar | 27959670PubMed |

Sanfins, A., Rodrigues, P., and Albertini, D. F. (2018). GDF-15 and BMP-15 direct the follicular symphony. J. Assist. Reprod. Genet. 35, 1741–1750.
GDF-15 and BMP-15 direct the follicular symphony.Crossref | GoogleScholarGoogle Scholar | 30039232PubMed |

Santa Cruz, R., Cushman, R. A., and Vinoles, C. (2018). Antral follicular count is a tool that may allow the selection of more precocious Bradford heifers at weaning. Theriogenology 119, 35–42.
Antral follicular count is a tool that may allow the selection of more precocious Bradford heifers at weaning.Crossref | GoogleScholarGoogle Scholar | 29982134PubMed |

Sartori, R., Bastos, M. R., Baruselli, P. S., Gimenes, L. U., Ereno, R. L., and Barros, C. M. (2010). Physiological differences and implications to reproductive management of Bos taurus and Bos indicus cattle in a tropical environment. Soc. Reprod. Fertil. 67, 357–375.

Seneda, M. M., Morotti, F., Zangirolamo, A. F., da Silva, N. C., Sanches, T. K., Blaschi, W., and Barreiros, T. R. R. (2019). Antral follicle population in prepubertal and pubertal heifers. Reprod. Fertil. Dev. 31, 10–16.
Antral follicle population in prepubertal and pubertal heifers.Crossref | GoogleScholarGoogle Scholar |

Sheikh, A. A., Hooda, O. K., Kalyan, A., Kamboj, A., Mohammed, S., Alhussien, M., Reddi, S., Shimray, P. G., Rautela, A., Pandita, S., Kapila, S., De, S., and Dang, A. K. (2018). Interferon-tau stimulated gene expression: a proxy to predict embryonic mortality in dairy cows. Theriogenology 120, 61–67.
Interferon-tau stimulated gene expression: a proxy to predict embryonic mortality in dairy cows.Crossref | GoogleScholarGoogle Scholar | 30096617PubMed |

Shirasuna, K., Matsumoto, H., Kobayashi, E., Nitta, A., Haneda, S., Matsui, M., Kawashima, C., Kida, K., Shimizu, T., and Miyamoto, A. (2012). Upregulation of interferon-stimulated genes and interleukin-10 in peripheral blood immune cells during early pregnancy in dairy cows. J. Reprod. Dev. 58, 84–90.
Upregulation of interferon-stimulated genes and interleukin-10 in peripheral blood immune cells during early pregnancy in dairy cows.Crossref | GoogleScholarGoogle Scholar | 22052007PubMed |

Shirasuna, K., Matsumoto, H., Matsuyama, S., Kimura, K., Bollwein, H., and Miyamoto, A. (2015). Possible role of interferon tau on the bovine corpus luteum and neutrophils during the early pregnancy. Reproduction 150, 217–225.
Possible role of interferon tau on the bovine corpus luteum and neutrophils during the early pregnancy.Crossref | GoogleScholarGoogle Scholar | 26078085PubMed |

Smith, S. B., Gotoh, T., and Greenwood, P. L. (2018). Current situation and future prospects for global beef production: overview of special issue. Asian-Australas. J. Anim. Sci. 31, 927–932.
Current situation and future prospects for global beef production: overview of special issue.Crossref | GoogleScholarGoogle Scholar | 29879806PubMed |

Souza, A. H., Carvalho, P. D., Rozner, A. E., Vieira, L. M., Hackbart, K. S., Bender, R. W., Dresch, A. R., Verstegen, J. P., Shaver, R. D., and Wiltbank, M. C. (2015). Relationship between circulating anti-Müllerian hormone (AMH) and superovulatory response of high-producing dairy cows. J. Dairy Sci. 98, 169–178.
Relationship between circulating anti-Müllerian hormone (AMH) and superovulatory response of high-producing dairy cows.Crossref | GoogleScholarGoogle Scholar | 25465542PubMed |

Spencer, T. E., and Bazer, F. W. (1996). Ovine interferon tau suppresses transcription of the estrogen receptor and oxytocin receptor genes in the ovine endometrium. Endocrinology 137, 1144–1147.
Ovine interferon tau suppresses transcription of the estrogen receptor and oxytocin receptor genes in the ovine endometrium.Crossref | GoogleScholarGoogle Scholar | 8603586PubMed |

Spencer, T. E., and Bazer, F. W. (2002). Biology of progesterone action during pregnancy recognition and maintenance of pregnancy. Front. Biosci. 7, d1879–1898.
Biology of progesterone action during pregnancy recognition and maintenance of pregnancy.Crossref | GoogleScholarGoogle Scholar | 12161340PubMed |

Spencer, T. E., and Bazer, F. W. (2004). Conceptus signals for establishment and maintenance of pregnancy. Reprod. Biol. Endocrinol. 2, 49.
Conceptus signals for establishment and maintenance of pregnancy.Crossref | GoogleScholarGoogle Scholar | 15236653PubMed |

Spencer, T. E., and Hansen, T. R. (2015). Implantation and establishment of pregnancy in ruminants. Adv. Anat. Embryol. Cell Biol. 216, 105–135.
Implantation and establishment of pregnancy in ruminants.Crossref | GoogleScholarGoogle Scholar | 26450497PubMed |

Spencer, T. E., Becker, W. C., George, P., Mirando, M. A., Ogle, T. F., and Bazer, F. W. (1995). Ovine interferon-tau regulates expression of endometrial receptors for estrogen and oxytocin but not progesterone. Biol. Reprod. 53, 732–745.
Ovine interferon-tau regulates expression of endometrial receptors for estrogen and oxytocin but not progesterone.Crossref | GoogleScholarGoogle Scholar | 7578700PubMed |

Spencer, T. E., Burghardt, R. C., Johnson, G. A., and Bazer, F. W. (2004). Conceptus signals for establishment and maintenance of pregnancy. Anim. Reprod. Sci. 82–83, 537–550.
Conceptus signals for establishment and maintenance of pregnancy.Crossref | GoogleScholarGoogle Scholar | 15271478PubMed |

Spencer, T. E., Johnson, G. A., Bazer, F. W., Burghardt, R. C., and Palmarini, M. (2007). Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reprod. Fertil. Dev. 19, 65–78.
Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses.Crossref | GoogleScholarGoogle Scholar | 17389136PubMed |

Spencer, T. E., Forde, N., Dorniak, P., Hansen, T. R., Romero, J. J., and Lonergan, P. (2013). Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants. Reproduction 146, 377–387.
Conceptus-derived prostaglandins regulate gene expression in the endometrium prior to pregnancy recognition in ruminants.Crossref | GoogleScholarGoogle Scholar | 23966582PubMed |

Spencer, T. E., Forde, N., and Lonergan, P. (2016). The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J. Dairy Sci. 99, 5941–5950.
The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants.Crossref | GoogleScholarGoogle Scholar | 26387021PubMed |

Spicer, L. J., Aad, P. Y., Allen, D. T., Mazerbourg, S., Payne, A. H., and Hsueh, A. J. (2008). Growth differentiation factor 9 (GDF9) stimulates proliferation and inhibits steroidogenesis by bovine theca cells: influence of follicle size on responses to GDF9. Biol. Reprod. 78, 243–253.
Growth differentiation factor 9 (GDF9) stimulates proliferation and inhibits steroidogenesis by bovine theca cells: influence of follicle size on responses to GDF9.Crossref | GoogleScholarGoogle Scholar | 17959852PubMed |

Sponchiado, M., Gomes, N. S., Fontes, P. K., Martins, T., del Collado, M., Pastore, A. A., Pugliesi, G., Nogueira, M. F. G., and Binelli, M. (2017). Pre-hatching embryo-dependent and -independent programming of endometrial function in cattle. PLoS One 12, e0175954.
Pre-hatching embryo-dependent and -independent programming of endometrial function in cattle.Crossref | GoogleScholarGoogle Scholar | 28423001PubMed |

Sreenan, J. M., and Diskin, M. G. (1986). The extent and timing of embryonic mortality in the cow. In ‘Current Topics in Veterinary Medicine and Animal Science. Vol. 34: Embryonic Mortality in Farm Animals’. (Eds J. M. Sreenan and M. G. Diskin.) pp. 1–11. (Springer: Dordrecht, Netherlands.)

Stojsin-Carter, A., Mahboubi, K., Costa, N. N., Gillis, D. J., Carter, T. F., Neal, M. S., Miranda, M. S., Ohashi, O. M., Favetta, L. A., and King, W. A. (2016). Systemic and local anti-Mullerian hormone reflects differences in the reproduction potential of Zebu and European type cattle. Anim. Reprod. Sci. 167, 51–58.
Systemic and local anti-Mullerian hormone reflects differences in the reproduction potential of Zebu and European type cattle.Crossref | GoogleScholarGoogle Scholar | 26898391PubMed |

Sudiman, J. (2014). Optimisation of oocyte in vitro maturation using oocyte secreted factors. Ph.D. Thesis, The University of Adelaide.

Sudiman, J., Sutton-McDowall, M. L., Ritter, L. J., White, M. A., Mottershead, D. G., Thompson, J. G., and Gilchrist, R. B. (2014). Bone morphogenetic protein 15 in the pro-mature complex form enhances bovine oocyte developmental competence. PLoS One 9, e103563.
Bone morphogenetic protein 15 in the pro-mature complex form enhances bovine oocyte developmental competence.Crossref | GoogleScholarGoogle Scholar | 25058588PubMed |

Sutton-McDowall, M. L., Purdey, M., Brown, H. M., Abell, A. D., Mottershead, D. G., Cetica, P. D., Dalvit, G. C., Goldys, E. M., Gilchrist, R. B., Gardner, D. K., and Thompson, J. G. (2015). Redox and anti-oxidant state within cattle oocytes following in vitro maturation with bone morphogenetic protein 15 and follicle stimulating hormone. Mol. Reprod. Dev. 82, 281–294.
Redox and anti-oxidant state within cattle oocytes following in vitro maturation with bone morphogenetic protein 15 and follicle stimulating hormone.Crossref | GoogleScholarGoogle Scholar | 25721374PubMed |

Tang, K. Q., Yang, W. C., Li, S. J., and Yang, L. G. (2013a). Polymorphisms of the bovine growth differentiation factor 9 gene associated with superovulation performance in Chinese Holstein cows. Genet. Mol. Res. 12, 390–399.
Polymorphisms of the bovine growth differentiation factor 9 gene associated with superovulation performance in Chinese Holstein cows.Crossref | GoogleScholarGoogle Scholar | 23420363PubMed |

Tang, K. Q., Yang, W. C., Zhang, X. X., and Yang, L. G. (2013b). Effects of polymorphisms in the bovine growth differentiation factor 9 gene on sperm quality in Holstein bulls. Genet. Mol. Res. 12, 2189–2195.
Effects of polymorphisms in the bovine growth differentiation factor 9 gene on sperm quality in Holstein bulls.Crossref | GoogleScholarGoogle Scholar | 23884762PubMed |

Teh, W. T., McBain, J., and Rogers, P. (2016). What is the contribution of embryo–endometrial asynchrony to implantation failure? J. Assist. Reprod. Genet. 33, 1419–1430.
What is the contribution of embryo–endometrial asynchrony to implantation failure?Crossref | GoogleScholarGoogle Scholar | 27480540PubMed |

Thornton, P. K. (2010). Livestock production: recent trends, future prospects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 2853–2867.
Livestock production: recent trends, future prospects.Crossref | GoogleScholarGoogle Scholar | 20713389PubMed |

Toji, N., Shigeno, S., Kizaki, K., Koshi, K., Matsuda, H., Hashiyada, Y., Imai, K., Takahashi, T., Ishiguro-Oonuma, T., and Hashizume, K. (2017). Evaluation of interferon-stimulated genes in peripheral blood granulocytes as sensitive responders to bovine early conceptus signals. Vet. J. 229, 37–44.
Evaluation of interferon-stimulated genes in peripheral blood granulocytes as sensitive responders to bovine early conceptus signals.Crossref | GoogleScholarGoogle Scholar | 29183572PubMed |

Visser, J. A., de Jong, F. H., Laven, J. S. E., and Themmen, A. P. N. (2006). Anti-Müllerian hormone: a new marker for ovarian function. Reproduction 131, 1–9.
Anti-Müllerian hormone: a new marker for ovarian function.Crossref | GoogleScholarGoogle Scholar | 16388003PubMed |

Wijma, R., Stangaferro, M. L., Kamat, M. M., Vasudevan, S., Ott, T. L., and Giordano, J. O. (2016). Embryo mortality around the period of maintenance of the corpus luteum causes alterations to the ovarian function of lactating dairy cows. Biol. Reprod. 95, 112.
Embryo mortality around the period of maintenance of the corpus luteum causes alterations to the ovarian function of lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 27707711PubMed |

Wilson, K. S., Hernandez Gifford, J. A., Ott, T. L., and Gifford, C. A. (2016). Protein expression and localization of receptor (chemosensory) transporter protein 4 in the endometrium during early pregnancy in sheep and cattle. J. Anim. Sci. 94, 102.
Protein expression and localization of receptor (chemosensory) transporter protein 4 in the endometrium during early pregnancy in sheep and cattle.Crossref | GoogleScholarGoogle Scholar |

Wiltbank, M. C., and Pursley, J. R. (2014). The cow as an induced ovulatory: timed AI after synchronization of ovulation. Theriogenology 81, 170–185.
The cow as an induced ovulatory: timed AI after synchronization of ovulation.Crossref | GoogleScholarGoogle Scholar | 24274420PubMed |

Wiltbank, M. C., Baez, G. M., Garcia-Guerra, A., Toledo, M. Z., Monteiro, P. L. J., Melo, L. F., Ochoa, J. C., Santos, J. E. P., and Sartori, R. (2016). Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology 86, 239–253.
Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows.Crossref | GoogleScholarGoogle Scholar | 27238438PubMed |

Wolf, E., Arnold, G. J., Bauersachs, S., Beier, H. M., Blum, H., Einspanier, R., Frohlich, T., Herrler, A., Hiendleder, S., Kolle, S., Prelle, K., Reichenbach, H.-D., Stojkovic, M., Wenigerkind, H., and Sinowatz, F. (2003). Embryo–maternal communication in bovine – strategies for deciphering a complex cross-talk. Reprod. Domest. Anim. 38, 276–289.
Embryo–maternal communication in bovine – strategies for deciphering a complex cross-talk.Crossref | GoogleScholarGoogle Scholar | 12887567PubMed |

Wrenzycki, C., Herrmann, D., Keskintepe, L., Martins, A., Sirisathien, S., Brackett, B., and Niemann, H. (2001). Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos. Hum. Reprod. 16, 893–901.
Effects of culture system and protein supplementation on mRNA expression in pre-implantation bovine embryos.Crossref | GoogleScholarGoogle Scholar | 11331635PubMed |

Wu, M. Y., and Hill, C. S. (2009). TGF-β superfamily signaling in embryonic development and homeostasis. Dev. Cell 16, 329–343.
TGF-β superfamily signaling in embryonic development and homeostasis.Crossref | GoogleScholarGoogle Scholar | 19289080PubMed |

Yang, M. Y., Cushman, R. A., and Fortune, J. E. (2017). Anti-Müllerian hormone inhibits activation and growth of bovine ovarian follicles in vitro and is localized to growing follicles. Mol. Hum. Reprod. 23, 282–291.
Anti-Müllerian hormone inhibits activation and growth of bovine ovarian follicles in vitro and is localized to growing follicles.Crossref | GoogleScholarGoogle Scholar | 28333275PubMed |

Yang, L., Wang, W., Li, S., Zhu, M., He, K., Yao, X., and Zhang, L. (2018). Differential expression of interferon-gamma, IL-4 and IL-10 in peripheral blood mononuclear cells during early pregnancy of the bovine. Reprod. Biol. 18, 312–315.
Differential expression of interferon-gamma, IL-4 and IL-10 in peripheral blood mononuclear cells during early pregnancy of the bovine.Crossref | GoogleScholarGoogle Scholar | 29960858PubMed |

Yoshino, H., Toji, N., Sasaki, K., Koshi, K., Yamagishi, N., Takahashi, T., Ishiguro-Oonuma, T., Matsuda, H., Yamanouchi, T., Hashiyada, Y., Imai, K., Izaike, Y., Kizaki, K., and Hashizume, K. (2018). A predictive threshold value for the diagnosis of early pregnancy in cows using interferon-stimulated genes in granulocytes. Theriogenology 107, 188–193.
A predictive threshold value for the diagnosis of early pregnancy in cows using interferon-stimulated genes in granulocytes.Crossref | GoogleScholarGoogle Scholar | 29172175PubMed |

Zhao, S., Wu, Y., Gao, H., Evans, A., and Zeng, S. M. (2017). Roles of interferon-stimulated gene 15 protein in bovine embryo development. Reprod. Fertil. Dev. 29, 1209–1216.
Roles of interferon-stimulated gene 15 protein in bovine embryo development.Crossref | GoogleScholarGoogle Scholar | 27165775PubMed |