29 TREATMENT OF DONOR CELLS WITH XENOPUS OOCYTE EXTRACT ENHANCED SOMATIC CELL NUCLEAR TRANSFER EMBRYO DEVELOPMENT
X. Yang A C , J. Mao A B , E. M. Walters B , M. T. Zhao A , K. Lee A and R. S. Prather A BA Division of Animal Science;
B National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211;
C Visiting Scholar at MU, current address: College of Preclinical Medicine, Fujian Medical University, Fuzhou, PR China 350004
Reproduction, Fertility and Development 24(1) 126-126 https://doi.org/10.1071/RDv24n1Ab29
Published: 6 December 2011
Abstract
Somatic cell nuclear transfer (SCNT) efficiency in pigs and other species is still very low. This low efficiency and the occurrence of developmental abnormalities in offspring has been attributed to incomplete or incorrect reprogramming. Cytoplasmic extracts from both mammalian and amphibian oocytes can alter the epigenetic state of mammalian somatic nuclei as well as gene expression to more resemble that of pluripotent cells. Rathbone et al. (2010) has showed that pretreating somatic donor cells with frog oocyte extract (FOE) increased live birth in ovine. Liu et al. (2011) also reported that treating donor cells with FOE enhanced handmade clone embryo development in pigs. The aim of this study was to evaluate the early development of cloned embryos produced with porcine GFP fibroblasts pre-treated with a permeabilizing agent, digitonin and matured frog oocyte extract. Frog egg cytoplasmic extract was prepared from one frog's oocytes after being matured in vitro to MII stage. The experiment included 2 groups. In the FOE-treated group, GFP-tagged fetal fibroblasts were permeabilized by digitonin (15 ng mL–1) and incubated in FOE containing an ATP-regenerating system (2.5 mM ATP, 125 μM GTP, 62.5 μg mL–1 of creatine kinase, 25 mM phosphocreatine and 1 mM NTP) at room temperature (24°C) for 2 h; cell membranes were re-sealed by culturing in 10% FBS in DMEM media for 2.5 h at 38.5°C before used as donor cells. In the control group, the same donor cells were treated with digitonin, but without frog oocyte extract incubation. The SCNT embryos were produced by using the 2 groups of donor cells as described above. In total, 305 control and 492 FOE oocytes were enucleated from 8 biological replicates. Two hundred fifty control and 370 FOE couplets were fused and cultured in porcine zygote medium 3. Percent cleavage was recorded on Day 2 and the percent blastocyst formation was determined on Day 7 (SCNT day = 0). In addition, the number of nuclei in the blastocysts was recorded on Day 7. Percent fusion, cleavage, blastocyst formation and number of nuclei in blastocysts were analysed by using SAS software (v9.2), with day and treatment class as main effects. There was no difference in percent fusion (FOE, 76.2 ± 2.5% vs control, 80.8 ± 2.8%) or in cleavage (FOE: 74.8 ± 2.5% vs control: 74.6 ± 2.9%). Only green blastocysts with 16 or more nuclei were considered to be a true SCNT blastocyst. The percent blastocyst was higher in the FOE group than that in the control (13.9 ± 0.8% vs 9.5 ± 0.9%, P < 0.05), whereas the number of nuclei in the blastocysts was not different between the 2 groups (39.7 ± 2.4, 35.9 ± 3.8 for FOE and control, respectively). In conclusion, our study demonstrated that pre-treatment of donor cells with digitonin and Xenopus MII oocyte extract increased porcine SCNT embryo development to blastocyst and cloning efficiency.
Funded by the National Natural Science Foundation of China (NO. 31071311), Natural Science Foundation of Fujian Province of China (No. 2009J06017) and NIH U42 RR18877.