Register      Login
Australian Systematic Botany Australian Systematic Botany Society
Taxonomy, biogeography and evolution of plants
RESEARCH ARTICLE (Open Access)

Phylogenomics of Australian sundews (Drosera: Droseraceae)

Luis T. Williamson https://orcid.org/0000-0002-0172-6773 A * , Ed Biffin https://orcid.org/0000-0002-6582-716X B , Timothy A. Hammer https://orcid.org/0000-0003-3816-7933 A B , Kor-jent van Dijk https://orcid.org/0000-0002-6521-2843 B , John G. Conran https://orcid.org/0000-0003-2268-2703 A and Michelle Waycott https://orcid.org/0000-0002-0822-0564 A B
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.

B State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, SA 5000, Australia.

* Correspondence to: luis.williamson@adelaide.edu.au

Handling Editor: Darren Crayn

Australian Systematic Botany 38, SB24016 https://doi.org/10.1071/SB24016
Submitted: 22 May 2024  Accepted: 1 June 2025  Published: 10 July 2025

© 2025 The Author(s) (or their employer(s)). Published by CSIRO Publishing. This is an open access article distributed under the Creative Commons Attribution 4.0 International License (CC BY)

Abstract

Drosera (Droseraceae) is one of the largest carnivorous plant genera globally, with Australia considered a nexus for the evolution of the genus. We present the most densely sampled phylogenomic analyses for Australian Drosera to date. As part of the Genomics for Australian Plants Initiative Stage II, 92 Drosera samples representing all major clades within Australia and key extra-Australian taxa were newly sequenced using Angiosperm353 and OzBaits nuclear bait sets, and the OzBaits plastid bait set. In total, 380 nuclear and 57 plastid loci were included in our final analyses. Our findings are broadly in congruence with conclusions of previous morphological studies that were informed by molecular data regarding the major lineages within Drosera. Incongruencies between the results from plastid and nuclear sequence data sets were primarily restricted to within-clade relationships, with high discordance noted in two closely affiliated species groups with centres of diversity across northern Australia and south-west Western Australia. Potential drivers of this phylogenetic discordance are investigated using Quartet Sampling and are discussed. An important outcome of these data is to highlight the diversity of novel evolutionary lineages within Australia for this group of plants that exhibit highly modified traits to survive in arid Australian environments.

Keywords: Angiosperms353, Australia, Caryophyllales, carnivorous plant, Drosera, Droseraceae, Genomics for Australian Plants, OzBaits, phylogenomics, phylogeny, sundew.

References

Albert VA, Williams SE, Chase MW (1992) Carnivorous plants: phylogeny and structural evolution. Science 257, 1491-1495.
| Crossref | Google Scholar | PubMed |

Anderson B, Midgley JJ (2003) Digestive mutualism, an alternate pathway in plant carnivory. Oikos 102, 221-224.
| Crossref | Google Scholar |

Asar Y, Sauquet H, Ho SYW (2024) Evolutionary rates of nuclear and organellar genomes are linked in land plants. BioRxiv 2024, 2024.08.05.606707 [Preprint, published 21 October 2024].
| Crossref | Google Scholar |

Baker WJ, Bailey P, Barber V, Barker A, Bellot S, Bishop D, Botigué LR, Brewer G, Carruthers T, Clarkson JJ, Cook J, Cowan RS, Dodsworth S, Epitawalage N, Françoso E, Gallego B, Johnson MG, Kim JT, Leempoel K, Maurin O, McGinnie C, Pokorny L, Roy S, Stone M, Toledo E, Wickett NJ, Zuntini AR, Eiserhardt WL, Kersey PJ, Leitch IJ, Forest F (2022) A comprehensive phylogenomic platform for exploring the Angiosperm Tree of Life. Systematic Biology 71, 301-319.
| Crossref | Google Scholar | PubMed |

Baldwin E, McNair M, Leebens-Mack J (2023) Rampant chloroplast capture in Sarracenia revealed by plastome phylogeny. Frontiers in Plant Science 14, 1237749.
| Crossref | Google Scholar | PubMed |

Baleeiro P, Jobson R, Barrett R (2020) Drosera stipularis, a new species for the D. petiolaris complex from Cape York Peninsula, Queensland. Telopea 23, 35-40.
| Crossref | Google Scholar |

Barker N, Weston P, Rutschmann F, Sauquet H (2007) Molecular dating of the ‘Gondwanan’ plant family Proteaceae is only partly congruent with the timing of the break-up of Gondwana. Journal of Biogeography 34, 2012-2027.
| Crossref | Google Scholar |

Brittnacher J (2011) Drosera phylogeny. In ‘International Carnivorous Plant Society’. (ICPS) Available at https://www.carnivorousplants.org/cp/evolution/DroseraPhylogeny [Verified 2 July 2025]

Brundrett M (2021) One biodiversity hotspot to rule them all: southwestern Australia – an extraordinary evolutionary centre for plant functional and taxonomic diversity. Journal of the Royal Society of Western Australia 104, 91-122.
| Crossref | Google Scholar |

Butts CT, Bierma JC, Martin RW (2016) Novel proteases from the genome of the carnivorous plant Drosera capensis: structural prediction and comparative analysis. Proteins 84, 1517-1533.
| Crossref | Google Scholar | PubMed |

Cai L, Xi Z, Lemmon EM, Lemmon AR, Mast A, Buddenhagen CE, Liu L, Davis CC (2021) The perfect storm: gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade, Malpighiales. Systematic Biology 70, 491-507.
| Crossref | Google Scholar | PubMed |

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972-1973.
| Crossref | Google Scholar | PubMed |

Carpenter EJ, Matasci N, Ayyampalayam S, Wu S, Sun J, Yu J, Vieira FRJ, Bowler C, Dorrell RG, Gitzendanner MA, Li L, Du W, Ullrich KK, Wickett NJ, Barkmann TJ, Barker MS, Leebens-Mack JH, Wong GK-S (2019) Access to RNA-sequencing data from 1,173 plant species: the 1000 Plant transcriptomes initiative (1KP). GigaScience 8, giz126.
| Crossref | Google Scholar | PubMed |

Chernomor O, von Haeseler A, Minh BQ (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65, 997-1008.
| Crossref | Google Scholar | PubMed |

Chrtek JA, Slavíková Z (1996) Comments on the families Drosophyllaceae and Droseraceae. Journal of the National Museum (Prague), Natural History Series 165, 139-141.
| Google Scholar |

Conran JG (2008) Aestivation organ structure in Drosera subgen. Ergaleium (Droseraceae): corms or tubers; roots or shoots? Australian Journal of Botany 56, 144-152.
| Crossref | Google Scholar |

Conran JG, Lowrie A (2007) The biogeography of Drosera stricticaulis (Droseraceae) in Australia: a disjunct ‘island’ refugee? Transactions of the Royal Society of South Australia 132, 142-151.
| Crossref | Google Scholar |

Crisp MD, Cook LG (2007) A congruent molecular signature of vicariance across multiple plant lineages. Molecular Phylogenetics and Evolution 43, 1106-1117.
| Crossref | Google Scholar | PubMed |

DeBuhr L (1977) Sectional reclassification of Drosera subgenus Ergaleium (Droseraceae). Australian Journal of Botany 25, 209-218.
| Crossref | Google Scholar |

de Salas MF (2018) Drosera gunniana comb. et stat. nov., a species in the Drosera peltata (Droseraceae) complex. Muelleria 36, 97-106.
| Crossref | Google Scholar |

Di Franco A, Poujol R, Baurain D, Philippe H (2019) Evaluating the usefulness of alignment filtering methods to reduce the impact of errors on evolutionary inferences. BMC Evolutionary Biology 19, 21.
| Crossref | Google Scholar | PubMed |

Dixon KW, Pate JS (1978) Phenology, morphology and reproductive biology of the tuberous sundew, Drosera erythrorhiza Lindl. Australian Journal of Botany 26, 441-454.
| Crossref | Google Scholar |

Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research 8, 175-185.
| Crossref | Google Scholar | PubMed |

Fleck SJ, Jobson RW (2023) Molecular phylogenomics reveals the deep evolutionary history of carnivory across land plants. Plants 12, 3356.
| Crossref | Google Scholar | PubMed |

Fleischmann A, Cross AT, Gibson R, Gonella PM, Dixon KW (2017a) Systematics and evolution of Droseraceae. In ʻCarnivorous Plants: Physiology, Ecology, and Evolutionʼ. (Eds AM Ellison, L Adamec) pp. 45–57. (Oxford University Press: Oxford, UK)

Fleischmann A, Schlauer J, Smith SA, Givnish TJ (2017b) Evolution of carnivory in angiosperms. In ʻCarnivorous Plants: Physiology, Ecology, and Evolutionʼ. (Eds AM Ellison, L Adamec) pp. 22–42. (Oxford University Press: Oxford, UK)

Fleischmann A, Gonella PM, Rivadavia F (2018) A new sectional name for the Brazilian tetraploid clade of Drosera subgenus Drosera. Carnivorous Plant Newsletter 47, 4-9.
| Crossref | Google Scholar |

Gibson R (1999) Drosera arcturi in Tasmania and a comparison with Drosera regia. Carnivorous Plant Newsletter 28, 76-80.
| Crossref | Google Scholar |

Gill AM, Ingwersen F (1976) Growth of Xanthorrhoea australis R.Br. in relation to fire. Journal of Applied Ecology 13, 195-203.
| Crossref | Google Scholar |

Groom P, Lamont B (2015) ʻPlant Life of Southwestern Australia: Adaptations for Survival.ʼ (de Gruyter Open: Warsaw, Poland)

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307-321.
| Crossref | Google Scholar |

Hoshi Y, Hizume M, Kondo K (1994) Genomic in situ hybridization to improve a hypothesis on natural-hybrid origin of the hexaploid Drosera spathulata ‘Kansai type’. La Kromosomo II 75, 2619-2623.
| Google Scholar |

International Carnivorous Plant Society (2024) Drosera hybrids. In ‘International Carnivorous Plant Society’. (ICPS) Available at https://www.carnivorousplants.org/cp/evolution/DroseraHybrids [Verified 2 July 2025]

Johnson MG, Pokorny L, Dodsworth S, Botigué LR, Cowan RS, Devault A, Eiserhardt WL, Epitawalage N, Forest F, Kim JT, Leebens-Mack JH, Leitch IJ, Maurin O, Soltis DE, Soltis PS, Wong GK-s, Baker WJ, Wickett NJ (2018) A universal probe set for targeted sequencing of 353 nuclear genes from any flowering plant designed using k-medoids clustering. Systematic Biology 68, 594-606.
| Crossref | Google Scholar |

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14, 587-589.
| Crossref | Google Scholar | PubMed |

Karlsson PS, Pate JS (1992) Resource allocation to asexual gemma production and sexual reproduction in south-western Australian pygmy and micro stilt-form species of sundew (Drosera spp. Droseraceae). Australian Journal of Botany 40, 353-364.
| Crossref | Google Scholar |

Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772-780.
| Crossref | Google Scholar | PubMed |

Krueger T (2022) New Australian Drosera taxa published since Allen Lowrie’s magnum opus. Carnivorous Plant Newsletter 50, 41-47.
| Crossref | Google Scholar |

Krueger T, Fleischmann A (2020) When three become two: Drosera coalara links Drosera citrina with Drosera nivea. Carnivorous Plant Newsletter 49, 6-16.
| Crossref | Google Scholar |

Krueger T, Fleischmann A (2021) A new species of Drosera section Arachnopus (Droseraceae) from the western Kimberley, Australia, and amendments to the range and circumscription of Drosera finlaysoniana. Phytotaxa 501, 56-84.
| Crossref | Google Scholar |

Krueger T, Robinson A, Bourke G, Fleischmann A (2023a) Small leaves, big diversity: citizen science and taxonomic revision triples species number in the carnivorous Drosera microphylla complex (D. section Ergaleium, Droseraceae). Biology 12, 141.
| Crossref | Google Scholar |

Krueger T, Cross A, Rangers D, Fleischmann A (2023b) Drosera maanyaa-gooljoo, a new species of Drosera section Arachnopus (Droseraceae) from the Buccaneer Archipelago and Yampi Peninsula, northwest Kimberley region, Western Australia. Phytotaxa 618, 31-46.
| Crossref | Google Scholar |

Lamont BB, Downes KS (2011) Fire-stimulated flowering among resprouters and geophytes in Australia and South Africa. Plant Ecology 212, 2111-2125.
| Crossref | Google Scholar |

Lamont BB, He T, Milne LA, Cowling RM (2024) Out of Africa: linked continents, overland migration and differential survival explain abundance of Proteaceae in Australia. Perspectives in Plant Ecology, Evolution and Systematics 62, 125778.
| Crossref | Google Scholar |

Lanfear R, Calcott B, Kainer D, Mayer C, Stamatakis A (2014) Selecting optimal partitioning schemes for phylogenomic datasets. BMC Ecology and Evolution 14, 82.
| Crossref | Google Scholar | PubMed |

Li D, Liu C-M, Luo R, Sadakane K, Lam T-W (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674-1676.
| Crossref | Google Scholar | PubMed |

Lin H-Y, Hao Y-J, Li J-H, Fu C-X, Soltis PS, Soltis DE, Zhao Y-P (2019) Phylogenomic conflict resulting from ancient introgression following species diversification in Stewartia s.l. (Theaceae). Molecular Phylogenetics and Evolution 135, 1-11.
| Crossref | Google Scholar | PubMed |

Linnaeus C (1753) ʻSpecies plantarum: exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas.ʼ (Impensis Laurentii Salvii: Holmiae) [In Latin]

Lowrie A (1991) A field trip to Darwin. Carnivorous Plant Newsletter 20, 114-123.
| Crossref | Google Scholar |

Lowrie A (2005) A taxonomic revision of Drosera section Stolonifera. Nuytsia 15, 355-393.
| Crossref | Google Scholar |

Lowrie A (2013a) ‘Carnivorous Plants of Australia Magnum Opus – Volume One.’ (Redfern Natural History Productions: Poole, UK)

Lowrie A (2013b) ‘Carnivorous Plants of Australia Magnum Opus – Volume Two.’ (Redfern Natural History Productions: Poole, UK)

Lowrie A (2013c) ‘Carnivorous Plants of Australia Magnum Opus – Volume Three.’ (Redfern Natural History Productions: Poole, UK)

Lowrie A, Conran JG (2014) Drosera murfetii (Droseraceae): a new species from Tasmania, Australia. Journal of the Adelaide Botanic Gardens 27, 7-21.
| Google Scholar |

Lowrie A, Nunn R, Robinson AS, Bourke G, McPherson S, Fleischmann A (2017a) ʻDrosera of the World, Vol. 1: Oceania.’​ (Redfern Natural History Productions: Poole, UK)

Lowrie A, Robinson AS, Nunn R, Rice B, Bourke G, Gibson R, McPherson S, Fleischmann A (2017b) ‘Drosera of the World, Vol. 2: Oceania, Asia, Europe, North America.’ (Redfern Natural History Productions: Poole, UK)

Mai U, Mirarab S (2018) TreeShrink: fast and accurate detection of outlier long branches in collections of phylogenetic trees. BMC Genomics 19, 272.
| Crossref | Google Scholar | PubMed |

Marchant NG, George AS (1982) Drosera. In ‘Flora of Australia. Vol. 8’. (Ed. AS George) pp. 9–46. (CSIRO Publishing: Canberra, ACT, Australia)

Mathieson MT, Thompson SL (2020) Drosera buubugujin M.T.Mathieson (Droseraceae, Drosera section Prolifera C.T.White), a spectacular new species of sundew from the Cape York Peninsula bioregion. Austrobaileya 10, 549-557.
| Crossref | Google Scholar |

McLay TGB, Fowler RM, Fahey PS, Murphy DJ, Udovicic F, Cantrill DJ, Bayly MJ (2023) Phylogenomics reveals extreme gene tree discordance in a lineage of dominant trees: hybridization, introgression, and incomplete lineage sorting blur deep evolutionary relationships despite clear species groupings in Eucalyptus subgenus Eudesmia. Molecular Phylogenetics and Evolution 187, 107869.
| Crossref | Google Scholar | PubMed |

Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30, 1188-1195.
| Crossref | Google Scholar | PubMed |

Mohn RA, Zenil-Ferguson R, Krueger TA, Fleischmann AS, Cross AT, Yang Y (2023) Dramatic difference in rate of chromosome number evolution among sundew (Drosera L., Droseraceae) lineages. Evolution 77, 2314-2325.
| Crossref | Google Scholar | PubMed |

Morales-Briones DF, Gehrke B, Huang C-H, Liston A, Ma H, Marx HE, Tank DC, Yang Y (2021) Analysis of paralogs in target enrichment data pinpoints multiple ancient polyploidy events in Alchemilla s.l. (Rosaceae). Systematic Biology 71, 190-207.
| Crossref | Google Scholar |

Nakano M, Kinoshita E, Ueda K (2004) Life history traits and coexistence of an amphidiploid, Drosera tokaiensis, and its parental species, D. rotundifolia and D. spatulata (Droseraceae). Plant Species Biology 19, 59-72.
| Crossref | Google Scholar |

Nauheimer L, Cui L, Clarke C, Crayn DM, Bourke G, Nargar K (2019) Genome skimming provides well resolved plastid and nuclear phylogenies, showing patterns of deep reticulate evolution in the tropical carnivorous plant genus Nepenthes (Caryophyllales). Australian Systematic Botany 32, 243-254.
| Crossref | Google Scholar |

Nevill PG, Howell KA, Cross AT, Williams AV, Zhong X, Tonti-Filippini J, Boykin LM, Dixon KW, Small I (2019) Plastome-wide rearrangements and gene losses in carnivorous Droseraceae. Genome Biology and Evolution 11, 472-485.
| Crossref | Google Scholar | PubMed |

Nge F, Biffin E, Waycott M, Thiele K (2021) Phylogenomics and continental biogeographic disjunctions:insight from the Australian starflowers (Calytrix). American Journal of Botany 109, 291-308.
| Crossref | Google Scholar |

Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32, 268-274.
| Crossref | Google Scholar | PubMed |

Nunn R, Bourke G (2017) An account of Drosera section Prolifera. Carnivorous Plant Newsletter 46, 92-100.
| Crossref | Google Scholar |

Nunn R, Lowrie A (2021) An account of Drosera section Lasiocephala. Carnivorous Plant Newsletter 50, 118-132.
| Crossref | Google Scholar |

Paetzold C, Wood KR, Eaton DAR, Wagner WL, Appelhans MS (2019) Phylogeny of Hawaiian Melicope (Rutaceae): RAD-seq resolves species relationships and reveals ancient introgression. Frontiers in Plant Science 10, 1074.
| Crossref | Google Scholar | PubMed |

Palfalvi G, Hackl T, Terhoeven N, Shibata TF, Nishiyama T, Ankenbrand M, Becker D, Förster F, Freund M, Iosip A, Kreuzer I, Saul F, Kamida C, Fukushima K, Shigenobu S, Tamada Y, Adamec L, Hoshi Y, Ueda K, Winkelmann T, Fuchs J, Schubert I, Schwacke R, Al-Rasheid K, Schultz J, Hasebe M, Hedrich R (2020) Genomes of the venus flytrap and close relatives unveil the roots of plant carnivory. Current Biology 30, 2312-2320.
| Crossref | Google Scholar | PubMed |

Pearman DA (2004) Drosera×belezeana Camus confirmed for the British Isles. Watsonia 25, 115-119.
| Google Scholar |

Pease JB, Brown JW, Walker JF, Hinchliff CE, Smith SA (2018) Quartet Sampling distinguishes lack of support from conflicting support in the green plant tree of life. American Journal of Botany 105, 385-403.
| Crossref | Google Scholar | PubMed |

Planchon JÉ (1848) Sur la famille des Droséracées. Annales des Sciences Naturelles Botanique (Paris) Séries 3 9, 285-309 [In French].
| Google Scholar |

Raza M, Ortiz EM, Schwung L, Shigita G, Schaefer H (2023) Resolving the phylogeny of Thladiantha (Cucurbitaceae) with three different target capture pipelines. BMC Ecology and Evolution 23, 75.
| Crossref | Google Scholar |

Rivadavia F, Kondo K, Kato M, Hasebe M (2003) Phylogeny of the sundews, Drosera (Droseraceae), based on chloroplast rbcL and nuclear 18S ribosomal DNA sequences. American Journal of Botany 90, 123-130.
| Crossref | Google Scholar | PubMed |

Robinson AS, Gibson R, Gonella P, McPherson S, Nunn R, Fleischmann A (2017) ‘​Drosera of the World, Vol. 3: Latin America and Africa.ʼ (Redfern Natural History Productions: Poole, UK)

Rokas A, Carroll SB (2005) More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Molecular Biology and Evolution 22, 1337-1344.
| Crossref | Google Scholar | PubMed |

Scharmann M, Wistuba A, Widmer A (2021) Introgression is widespread in the radiation of carnivorous Nepenthes pitcher plants. Molecular Phylogenetics and Evolution 163, 107214.
| Crossref | Google Scholar | PubMed |

Schlauer J, Fleischmann A (2016) Chemical evidence for hybridity in Drosera (Droseraceae). Biochemical Systematics and Ecology 66, 33-36.
| Crossref | Google Scholar |

Schlauer J, Hartmeyer S, Hartmeyer I (2019) Chemistry and surface micromorphology of the Queensland sundews (Drosera section Prolifera). Carnivorous Plant Newsletter 48, 111-116.
| Crossref | Google Scholar |

Schnell DE (1995) A natural hybrid of Drosera anglica Huds. and Drosera linearis Goldie in Michigan. Rhodora 97, 164-170.
| Google Scholar |

Seine R, Barthlott W (1994) Some proposals on the infrageneric classification of Drosera L. Taxon 43, 583-589.
| Crossref | Google Scholar |

Specht RL, Specht A (1999) ‘Australian plant communities: dynamics of structure, growth and biodiversity.’ (Oxford University Press).

Steenwyk JL, Buida TJ, III, Li Y, Shen X-X, Rokas A (2020) ClipKIT: a multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biology 18, e3001007.
| Crossref | Google Scholar | PubMed |

Thornhill AH, Ho SYW, Külheim C, Crisp MD (2015) Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny. Molecular Phylogenetics and Evolution 93, 29-43.
| Crossref | Google Scholar | PubMed |

van Dijk K, Waycott M, Biffin E, Creed JC, Albertazzi FJ, Samper-Villarreal J (2023) Phylogenomic Insights into the Phylogeography of Halophila baillonii Asch. Diversity 15, 111.
| Crossref | Google Scholar |

Waycott M, van Dijk K, Biffin E (2021) A hybrid capture RNA bait set for resolving genetic and evolutionary relationships in angiosperms from deep phylogeny to intraspecific lineage hybridization. BioRxiv 2021, 2021.09.06.456727 [Preprint, published 7 September 2021].
| Crossref | Google Scholar |

Wood CE (1955) Evidence for the hybrid origin of Drosera anglica. Rhodora 57, 105-130.
| Google Scholar |

Yan Z, Smith ML, Du P, Hahn MW, Nakhleh L (2022) Species tree inference methods intended to deal with incomplete lineage sorting are robust to the presence of paralogs. Systematic Biology 71, 367-381.
| Crossref | Google Scholar | PubMed |

Yang Y, Smith SA (2014) Orthology inference in nonmodel organisms using transcriptomes and low-coverage genomes: improving accuracy and matrix occupancy for phylogenomics. Molecular Biology and Evolution 31(11), 3081-3092.
| Crossref | Google Scholar |

Yesson C, Culham A (2006) Phyloclimatic modeling: combining phylogenetics and bioclimatic modeling. Systematic Biology 55, 785-802.
| Crossref | Google Scholar | PubMed |

Zeng C-X, Hollingsworth PM, Yang J, He Z-S, Zhang Z-R, Li D-Z, Yang J-B (2018) Genome skimming herbarium specimens for DNA barcoding and phylogenomics. Plant Methods 14, 43.
| Crossref | Google Scholar | PubMed |

Zhang C, Mirarab S (2022) Weighting by gene tree uncertainty improves accuracy of quartet-based species trees. Molecular Biology and Evolution 39, msac215.
| Crossref | Google Scholar | PubMed |

Zhang C, Rabiee M, Sayyari E, Mirarab S (2018) ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics 19, 153.
| Crossref | Google Scholar | PubMed |

Zhang C, Scornavacca C, Molloy EK, Mirarab S (2020) ASTRAL-Pro: quartet-based species-tree inference despite paralogy. Molecular Biology and Evolution 37, 3292-3307.
| Crossref | Google Scholar | PubMed |

Zhou BF, Yuan S, Crowl AA, Liang Y-Y, Shi Y, Chen X-Y, An Q-Q, Kang M, Manos PS (2022) Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere. Nature Communications 13, 1320.
| Crossref | Google Scholar | PubMed |

Zuntini AR, Carruthers T, Maurin O, et al. (2024) Phylogenomics and the rise of the angiosperms. Nature 629, 843-850.
| Crossref | Google Scholar | PubMed |