Fuel-aware forest fire danger rating system RISICO: a comparative study for Italy
Nicolò Perello

A
B
C
Abstract
Land use and climate changes are altering wildfire regimes globally, necessitating forest fire danger rating indices that can accurately identify spatio-temporal fire danger patterns for effective wildfire risk management.
Many existing models primarily rely on weather conditions, often overlooking fuel and providing daily information. This study introduces the latest version of the RISICO model, developed in the early 2000s and used operationally by the Italian Civil Protection system for decades. RISICO explicitly incorporates fuel into its computations, providing hourly outputs.
The fuel classification used by RISICO is based on a wildfire susceptibility model developed using machine learning techniques, reducing data requirements. The model’s performance was tested against various fire danger indices, considering the past 16 years of Italian wildfires.
Analysis of the RISICO outputs demonstrated improved performance in accurately identifying periods and locations of increased fire danger, more precisely narrowing the areas considered at risk compared with other models from the literature.
RISICO proves to be an effective tool for operational use in civil protection contexts, thanks to its ability to identify fire danger conditions accurately and with ease of implementation.
This study highlights the importance of including fuel characteristics within fire danger models to enhance their discrimination ability and improve wildfire risk management.
Keywords: civil protection, early warning system, fire danger, fire danger rating system, fire weather, fuel, fuel mapping, Italy, risk management, wildfire risk management.
References
Abdollahi A, Yebra M (2023) Forest fuel type classification: review of remote sensing techniques, constraints and future trends. Journal of Environmental Management 342, 118315.
| Crossref | Google Scholar | PubMed |
Alexander ME, Lee BS, Lee CY (1984) Hourly calculation of the Fine Fuel Moisture Code, Initial Spread Index, and Fire Weather Index with the Texas Instruments model 59 hand-held calculator. Study NOR-5-191, File Report 7. 19 p. (Department of Agriculture, Ministry of State for Forestry, Canadian Forestry Service, Northern Forest Research Centre: Edmonton, Alberta)
Aragoneses E, García M, Salis M, Ribeiro LM, Chuvieco E (2023) Classification and mapping of European fuels using a hierarchical, multipurpose fuel classification system. Earth Sysem Science Data 15, 1287-1315.
| Crossref | Google Scholar |
Ascoli D, Vacchiano G, Scarpa C, Arca B, Barbati A, Battipaglia G, Elia M, Esposito A, Garfì V, Lovreglio R, Mairota P, Marchetti M, Marchi E, Meytre S, Ottaviano M, Pellizzaro G, Rizzolo R, Sallustio L, Salis M, Sirca C, Valese E, Ventura A, Bacciu V (2020) Harmonized dataset of surface fuels under Alpine, temperate and Mediterranean conditions in Italy. A synthesis supporting fire management. iForest 13, 513-522.
| Crossref | Google Scholar |
Baghino F, Gissi E, Perello N, Fiorucci P (2024) Operational application of mathematical modeling for enhanced wildfire risk management in Liguria. IFAC-PapersOnLine 58(2), 61-66.
| Crossref | Google Scholar |
Benali A, Guiomar N, Gonçalves H, Mota B, Silva F, Fernandes PM, Mota C, Penha A, Santos J, Pereira JMC, Sá ACL (2023) The Portuguese Large Wildfire Spread database (PT-FireSprd). Earth System Science Data 15, 3791-3818.
| Crossref | Google Scholar |
Breiman L (2001) Random forests. Machine Learning 45, 5-32.
| Crossref | Google Scholar |
Calle A, Casanova JL, Romo A (2006) Fire detection and monitoring using MSG Spinning Enhanced Visible and Infrared Imager (SEVIRI) data. Journal of Geophysical Research Atmospheres 111(G4), G04S06.
| Crossref | Google Scholar |
Carlucci M, Zambon I, Colantoni A, Salvati L (2019) Socioeconomic development, demographic dynamics and forest fires in Italy, 1961–2017: a time-series analysis. Sustainability 11, 1305.
| Crossref | Google Scholar |
Castel-Clavera J, Pimont F, Opitz T, Ruffault J, Barbero R, Allard D, Dupuy J-L (2025) A comparative analysis of fire-weather indices for enhanced fire activity prediction with probabilistic approaches. Agricultural and Forest Meteorology 361, 110315.
| Crossref | Google Scholar |
Castellnou M, Prat-Guitart N, Arilla E, Larrañaga A, Nebot E, Castellarnau X, Vendrell J, Pallàs J, Herrera J, Monturiol M, Cespedes J, Pagès J, Gallardo C, Miralles M (2019) Empowering strategic decision-making for wildfire management: avoiding the fear trap and creating a resilient landscape. Fire Ecology 15, 31.
| Crossref | Google Scholar |
De Angelis A, Ricotta C, Conedera M, Pezzatti GB (2015) Modelling the meteorological forest fire niche in heterogeneous pyrologic conditions. PLoS One 10(2), e0116875.
| Crossref | Google Scholar | PubMed |
de Groot WJ, Wotton BM, Flannigan MD (2015) Wildland fire danger rating and early warning systems. In ‘Wildfire Hazards, Risks and Disasters’. (Eds JF Shroder, D Paton) pp. 207–228. (Elsevier) 10.1016/B978-0-12-410434-1.00011-7
de Jong MC, Wooster MJ, Kitchen K, Manley C, Gazzard R, McCall FF (2016) Calibration and evaluation of the Canadian Forest Fire Weather Index (FWI) System for improved wildland fire danger rating in the United Kingdom. Natural Hazards and Earth System Sciences 16, 1217-1237.
| Crossref | Google Scholar |
Di Giuseppe F (2023) Accounting for fuel in fire danger forecasts: the fire occurrence probability index (FOPI). Environmental Ressearch Letter 18, 064029.
| Crossref | Google Scholar |
Di Giuseppe F, Pappenberger F, Wetterhall F, Krzeminski B, Camia A, Libertá A, San Miguel J (2016) The potential predictability of fire danger provided by numerical weather prediction. Journal of Applied Meteorology and Climatology 55, 2469-2491.
| Crossref | Google Scholar |
Doerr SH, Santín C (2016) Global trends in wildfire and its impacts: perceptions versus realities in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences 371(1696), 20150345.
| Crossref | Google Scholar | PubMed |
Eastaugh CS, Arpaci A, Vacik H (2012) A cautionary note regarding comparisons of fire danger indices. Natural Hazards and Earth System Sciences 12, 927-934.
| Crossref | Google Scholar |
Eriksson CP, Johansson N, McNamee M (2023) The performance of wildfire danger indices: a Swedish case study. Safety Science 159, 106038.
| Crossref | Google Scholar |
Eumetsat (2019) MTG-FCI: ATBD for Active Fire Monitoring Product (Technical documentation). Available at https://user.eumetsat.int/s3/eup-strapi-media/pdf_active_fire_mon_prod_8d5feca41c.pdf [accessed on 9 June 2025].
FCFDG Forestry Canada Fire Danger Group (1992) Development and structure of the Canadian Forest Fire Behavior Prediction System. Forestry Canada, Headquarters, Fire Danger Group and Science and Sustainable Development Directorate, Ottawa. Information Report ST-X-3, 64.
| Google Scholar |
Fiorucci P, Gaetani F, Minciardi R (2008) Development and application of a system for dynamic wildfire risk assessment in Italy. Environmental Modelling & Software 23(6), 690-702.
| Crossref | Google Scholar |
Fiorucci P, D’Andrea M, Bastia S, Gollini A, Gualtieri S, Negro D, Severino M (2018) II Aggiornamento Del Manuale D’uso del Sistema Previsionale Della Pericolosità Potenziale Degli Incendi Boschivi RIS.I.CO. (Italian Civil Protection Department - Presidency of the Council of Ministers, and CIMA Research Foundation: Savona, Italy). Available at https://www.mydewetra.org/wiki/index.php/File:Manuale_RISICO_agg2018.pdf [verified 28 January 2025] [In Italian]
Flannigan MD, Logan KA, Amiro BD, Skinner WR, Stocks B (2005) Future area burned in Canada. Climatic Change 72, 1-16.
| Crossref | Google Scholar |
Ganteaume A, Camia A, Jappiot M, San Miguel-Ayanz J, Long-Fournel M, Lampin C (2013) A review of the main driving factors of forest fire ignition over Europe. Environmental Management 51(3), 651-662.
| Crossref | Google Scholar | PubMed |
Ganteaume A, Barbero R, Jappiot M, Maillé E (2021) Understanding future changes to fires in southern Europe and their impacts on the wildland–urban interface. Journal of Safety Science and Resilience 2(1), 20-29.
| Crossref | Google Scholar |
Italian Civil Protection Department and CIMA Research Foundation (2014) The Dewetra platform: a multi-perspective architecture for risk management during emergencies. In ‘Information Systems for Crisis Response and Management in Mediterranean Countries’. (Eds C Hanach, F Bénaben, F Charoy) pp. 165–177. (Springer International Publishing: Cham, Switzerland)
Júnior JS, Paulo JR, Mendes J, Alves D, Ribeiro LM, Viegas C (2022) Automatic forest fire danger rating calibration: exploring clustering techniques for regionally customizable fire danger classification. Expert Systems with Applications 193, 116380.
| Crossref | Google Scholar |
Krebs P, Pezzatti GB, Mazzoleni S, Talbot LM, Conedera M (2010) Fire regime: history and definition of a key concept in disturbance ecology. Theory of Biosciences 129, 53-69.
| Crossref | Google Scholar | PubMed |
Leuenberger M, Parente J, Tonini M, Pereira M G, Kanevski M (2018) Wildfire susceptibility mapping: deterministic vs. stochastic approaches. Environmental Modelling & Software 101, 194-203.
| Crossref | Google Scholar |
Mas J-F, Soares Filho B, Pontius RG, Farfán Gutiérrez M, Rodrigues H (2013) A suite of tools for ROC analysis of spatial models. ISPRS International Journal of Geo-Information 2(3), 869-887.
| Crossref | Google Scholar |
McWethy DB, Schoennagel T, Higuera PE, Krawchuk M, Harvey BJ, Metcalf EC, Schultz C, Miller C, Metcalf AL, Boma B, Virapongse A, Kulig JC, Stedman RC, Ratajczak Z, Nelson CR, Kolden C (2019) Rethinking resilience to wildfire. Nature Sustainability 2(9), 797-804.
| Crossref | Google Scholar |
Nelson RMJ (2000) Prediction of diurnal change in 10-h fuel stick moisture content. Canadian Journal of Forest Research 30(7), 1071-1087.
| Crossref | Google Scholar |
Orieux A (1974) Conditions météorologiques et incendies en région méditerranéenne. Revue forestière française no spécial Incendies de forêt 26, 122-129 https://hal.science/hal-03395671v1.
| Google Scholar |
Pausas JG, Keeley JE (2021) Wildfires and global change. Frontiers in Ecology and the Environment 19(7), 387-395.
| Crossref | Google Scholar |
Perello N, Trucchia A, Baghino F, Asif BS, Palmieri L, Rebora N, Fiorucci P (2024) Cellular automata-based simulators for the design of prescribed fire plans: the case study of Liguria, Italy. Fire Ecology 20, 7.
| Crossref | Google Scholar |
Perello N, Trucchia A, D’Andrea M, Degli Esposti S, Fiorucci P, Gollini A, Negro D (2025) An adaptable dead fuel moisture model for various fuel types and temporal scales tailored for wildfire danger assessment. Environmental Modelling & Software 183, 106254.
| Crossref | Google Scholar |
PPRD East 3 (2024) Guidelines for the Institution of a National Wildfire Early Warning System. Prevention, Preparedness and Response to natural and man-made disasters in Eastern Partnership countries - PPRD East 3. Published on 25 October 2024. Available at https://civil-protection-knowledge-network.europa.eu/media/guidelines-institution-national-wildfire-early-warning-system [verified 28 January 2025].
Richardson E, Trevizani R, Greenbaum JA, Carter H, Nielsen M, Peters B (2024) The receiver operating characteristic curve accurately assesses imbalanced datasets. Patterns 5(6), 100994.
| Crossref | Google Scholar | PubMed |
Rodell C, Howard R, Jain P, Moisseeva N, Chui T, Stull R (2024) Forecasting hourly wildfire risk: enhancing fire danger assessment using numerical weather prediction. Weather and Forecasting 39, 925-941.
| Crossref | Google Scholar |
San-Miguel-Ayanz J, Schulte E, Schmuck G, Camia A, Strobl P, Libertà G, Giovando C, Boca R, Sedano F, Kempeneers P, McInerney D, Withmore C, Santos de Oliveira S, Rodrigues M, Durrant T, Corti P, Oehler F, Vilar L, Amatulli G (2012) Comprehensive monitoring of wildfires in Europe: the European Forest Fire Information System (EFFIS). In ‘Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts’. (Ed. J Tiefenbacher) pp. 87–105. (IntechOpen) 10.5772/28441
Sen PK (1968) Estimates of regression coefficient based on Kendall’s tau. Journal of the American Statistical Association 63, 1379-1389.
| Crossref | Google Scholar |
Sharples JJ, McRae RHD, Weber RO, Gill AM (2009) A simple index for assessing fire danger rating. Environmental Modelling & Software 24, 764-774.
| Crossref | Google Scholar |
Sirca C, Salis M, Arca B, Duce P, Spano D (2018) Assessing the performance of fire danger indexes in a Mediterranean area. iForest 11, 563-571.
| Crossref | Google Scholar |
SNPA (2024) Consumo di suolo, dinamiche territoriali e servizi ecosistemici. Sistema Nazionale Protezione Ambiente - SNPA. Report ambientali SNPA, 43/2024. ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale, Via Vitaliano Brancati 48, 00144, Rome. Available at https://groupware.sinanet.isprambiente.it/uso-copertura-e-consumo-di-suolo/library/copertura-del-suolo/corine-land-cover/ [verified 28 January 2025].
Srock AF, Charney JJ, Potter BE, Goodrick SL (2018) The hot-dry-windy index: a new fire weather index. Atmosphere 9, 279.
| Crossref | Google Scholar |
Swiss Federal Institute of Forest, Snow and Landscape Research WSL (2012) Fire Weather Indices Wiki. Available at https://wikifire.wsl.ch/tiki-index515f.html?page=Introduction&structure=Fire [verified 28 January 2025].
Tartaglione N, Parodi A, Bernini L, Hachinger S, Kranzlmüller D (2024) CHAPTER: 3 × 3 km meteorological data 1981–2022 for Europe: 2D extracted fields [Data set]. Leibniz Supercomputing Centre (LRZ), Garching b.M. (Germany) 10.25927/0ppk7-znk14.
Taylor SW, Douglas GW, Dean CB, Martell DL (2013) Wildfire prediction to inform fire management: statistical science challenges. Statistical Science 28(4), 586-615.
| Crossref | Google Scholar |
Tedim F, Leone V, Amraoui M, Bouillon C, Coughlan MR, Delogu GM, Fernandes PM, Ferreira C, McCaffrey S, McGee TK, Parente J, Paton D, Pereira MG, Riberio LM, Viegas DX, Xanthopoulos G (2018) Defining extreme wildfire events: difficulties, challenges, and impacts. Fire 1(1), 9.
| Crossref | Google Scholar |
Tonini M, D’Andrea M, Biondi G, Degli Esposti S, Trucchia A, Fiorucci P (2020) A machine learning-based approach for wildfire susceptibility mapping. The case study of the Liguria region in Italy. Geosciences 10(3), 105.
| Crossref | Google Scholar |
Toy-Opazo O, Fuentes-Ramirez A, Palma-Soto V, Garcia RA, Moloney KA, Demarco R, Fuentes-Castillo A (2024) Flammability features of native and non-native woody species from the southernmost ecosystems: a review. Fire Ecology 20(1), 21.
| Crossref | Google Scholar |
Trucchia A, D’Andrea M, Baghino F, Fiorucci P, Ferraris L, Negro D, Gollini A, Severino M (2020) PROPAGATOR: an operational cellular-automata based wildfire simulator. Fire 3, 26.
| Crossref | Google Scholar |
Trucchia A, Meschi G, Fiorucci P, Gollini A, Negro D (2022) Defining wildfire susceptibility maps in Italy for understanding seasonal wildfire regimes at the national level. Fire 5, 30.
| Crossref | Google Scholar |
Trucchia A, Meschi G, Fiorucci P, Provenzale A, Tonini M, Pernice U (2023) Wildfire hazard mapping in the eastern Mediterranean landscape. International Journal of Wildland Fire 32, 417-434.
| Crossref | Google Scholar |
Viegas DX, Bovio G, Ferreira A, Nosenzo A, Sol B (1999) Comparative study of various methods of fire danger evaluation in southern Europe. International Journal of Wildland Fire 9(4), 235-246.
| Crossref | Google Scholar |
Wunder S, Calkin DE, Charlton V, Feder S, de Arano IM, Moore P, Rodriguez y Silva F, Tacconi L, Vega-Garcia C (2021) Resilient landscapes to prevent catastrophic forest fires: socioeconomic insights towards a new paradigm. Forest Policy and Economics 128, 102458.
| Crossref | Google Scholar |
Yamazaki D, Ikeshima D, Tawatari R, Yamaguchi T, O’Loughlin F, Neal JC, Sampson CC, Kanae S, Bates PD (2017) A high accuracy map of global terrain elevations. Geophysical Research Letters 44, 5844-5853.
| Crossref | Google Scholar |
Zacharakis I, Tsihrintzis VA (2023) Environmental Forest Fire Danger Rating Systems and Indices around the globe: a review. Land 12(1), 194.
| Crossref | Google Scholar |