Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Habitat suitability and connectivity for an endangered brown bear population in the Iranian Caucasus

N. Habibzadeh https://orcid.org/0000-0001-7380-557X A C and M. R. Ashrafzadeh B
+ Author Affiliations
- Author Affiliations

A Department of Environmental Sciences, Faculty of Agriculture and Natural Resources, Tabriz Branch, Islamic Azad University, Tabriz, 51579-44533, Iran.

B Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, 88156-48456, Iran.

C Corresponding author. Email: habibzadeh@iaut.ac.ir

Wildlife Research 45(7) 602-610 https://doi.org/10.1071/WR17175
Submitted: 1 December 2017  Accepted: 31 August 2018   Published: 31 October 2018

Abstract

Context: The identification of suitable habitats and the assessment of connectivity are important to preserve key areas for small isolated, endangered populations. The brown bear, Ursus arctos, needs connectivity to supply the primary habitat requirements including food, water, shelter and space and to provide gene flow among all populations in the Iranian Caucasus.

Aims: In the present study, we investigated the status and habitat requirements of an endangered brown bear population within the Iranian Caucasus.

Methods: We applied an approach of consensus species distribution modelling to estimate the distribution of suitable habitats for brown bears using uncorrelated environmental variables. We then used the concept of circuit theory on resultant breeding patches to evaluate regional patterns of connectivity among these patches.

Key results: We predicted that ~9.10% of the study area is suitable for the brown bear at present. Ten patches (7.95% of the study area) were detected as suitable for breeding populations, where some populations are not able to survive without connectivity. The results indicated that habitat connectivity is sometimes widely affected by a high concentration of human activities such as roads, settlements and mining activities. Our findings showed that existing conservation areas could not safeguard the connectivity of brown bear habitats across the Iranian Caucasus.

Conclusions: Our results can help target fine-scaled planning approaches for the maintenance of bear meta-population structure, as well as facilitate the movement of individuals by protecting different landscape features.

Implications: The populations of brown bear are among the first to be harmed by the loss of habitat and connectivity, and, thus, this species is an appropriate focal species for linkage design that is beneficial for threatened populations of other co-existing species such as Persian leopard, grey wolf and Eurasian lynx. Moreover, the brown bear is among the most popular flagship species for conservation planning, which might increase public support for the restoration of habitat and linkages.

Additional keywords: focal species, habitat fragmentation, small isolated populations, Ursus arctos.


References

Allouche, O., Tsoar, A., and Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic. Journal of Applied Ecology 43, 1223–1232.
Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic.Crossref | GoogleScholarGoogle Scholar |

Almpanidou, V., Mazaris, A. D., Mertzanis, Y., Avraam, I., Anto Niou, I., Pantis, J. D., and Sgardelis, S. P. (2014). Providing insights on habitat connectivity for male brown bears: a combination of habitat suitability and landscape graph-based models. Ecological Modelling 286, 37–44.
Providing insights on habitat connectivity for male brown bears: a combination of habitat suitability and landscape graph-based models.Crossref | GoogleScholarGoogle Scholar |

Araújo, M. B., and New, M. (2007). Ensemble forecasting of species distributions. Trends in Ecology & Evolution 22, 42–47.
Ensemble forecasting of species distributions.Crossref | GoogleScholarGoogle Scholar |

Ashrafzadeh, M. R., Kaboli, M., and Naghavi, M. R. (2016). Mitochondrial DNA analysis of Iranian brown bears (Ursus arctos) reveals new phylogeographic lineage. Mammalian Biology 81, 1–9.
Mitochondrial DNA analysis of Iranian brown bears (Ursus arctos) reveals new phylogeographic lineage.Crossref | GoogleScholarGoogle Scholar |

Ashrafzadeh, M. R., Khosravi, R., Ahmadi, M., and Kaboli, M. (2018). Landscape heterogeneity and ecological niche isolation shape the distribution of spatial genetic variation in Iranian brown bears, Ursus arctos (Carnivora: Ursidae). Mammalian Biology 93, 64–75.
Landscape heterogeneity and ecological niche isolation shape the distribution of spatial genetic variation in Iranian brown bears, Ursus arctos (Carnivora: Ursidae).Crossref | GoogleScholarGoogle Scholar |

Atwood, T. C., Young, J. K., Beckmann, J. P., Breck, S. W., Fike, J., Rhodes, O. E., and Bristow, K. D. (2011). Modeling connectivity of black bears in a desert sky island archipelago. Biological Conservation 144, 2851–2862.
Modeling connectivity of black bears in a desert sky island archipelago.Crossref | GoogleScholarGoogle Scholar |

Barbet-Massin, M., Jiguet, F., Albert, C. H., and Thuiller, W. (2012). Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution 3, 327–338.
Selecting pseudo-absences for species distribution models: how, where and how many?Crossref | GoogleScholarGoogle Scholar |

Beier, P., Majka, D., and Jenness, J. (2007). ‘Designing Wildlife Corridors with ArcGIS.’ (Watsonville, CA.) Available at http:// www.corridordesign.org [Accessed 21 March 2013].

Breiman, L. (2001). Random forest. Machine Learning 45, 5–32.
Random forest.Crossref | GoogleScholarGoogle Scholar |

Can, Ö. E., and Togan, I. (2004). Status and management of brown bears in Turkey. Ursus 15, 48–53.
Status and management of brown bears in Turkey.Crossref | GoogleScholarGoogle Scholar |

Carrete, M., Sánchez-Zapata, J. A., Calvo, J. F., and Lande, R. (2005). Demography and habitat availability in territorial occupancy of two competing species. Oikos 108, 125–136.
Demography and habitat availability in territorial occupancy of two competing species.Crossref | GoogleScholarGoogle Scholar |

Caussimont, G., and Herrero, J. (1997). The brown bear in the Spanish Pyrenees: present status and recommendations for protection. Bears: Their Biology and Management 9, 7–12.

Chefaoui, R. M., and Lobo, J. M. (2008). Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling 210, 478–486.
Assessing the effects of pseudo-absences on predictive distribution model performance.Crossref | GoogleScholarGoogle Scholar |

Danielson, J. J., and Gesch, D. B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010). U.S. Geological Survey Open-File Report 2011–1073, 26 pp. (U.S. Geological Survey: Reston, VA)

Dickson, B. G., Roemer, G. W., Mcrae, B. H., and Rundall, J. M. (2013). Models of regional habitat quality and connectivity for pumas (Puma concolor) in the southwestern United States. PLoS One 8, e81898.
Models of regional habitat quality and connectivity for pumas (Puma concolor) in the southwestern United States.Crossref | GoogleScholarGoogle Scholar |

Didan, K. and Huete, A. (2015). MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid. NASA LP DAAC. Available at http://doi.org/10.5067/MODIS/MOD13A2.006 [accessed 8 December 2015]

Farhadinia, M. S., Ahmadi, M., Sharbafi, E., Khosravi, S., Alinezhad, H., and Macdonald, D. M. (2015). Leveraging trans-boundary conservation partnerships: persistence of Persian leopard (Panthera pardus saxicolor) in the Iranian Caucasus. Biological Conservation 191, 770–778.
Leveraging trans-boundary conservation partnerships: persistence of Persian leopard (Panthera pardus saxicolor) in the Iranian Caucasus.Crossref | GoogleScholarGoogle Scholar |

Favilli, F., Hoffmann, C., Ravazzoli, E., and Streifeneder, T. (2013). ‘BioRegio Carpathians: Advanced Tools and Methodologies Adopted GIS Model Design for Deriving Ecological Corridors.’ (Institute for Regional Development and Location Management, European Academy of Bolzano: Bolzano, Italy.)

Fielding, A. H., and Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24, 38–49.
A review of methods for the assessment of prediction errors in conservation presence/absence models.Crossref | GoogleScholarGoogle Scholar |

Friedman, J. H., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting. Annals of Statistics 28, 337–407.

Friedman, J. H. (2001). Greedy function approximation: a slope boosting machine. Annals of Statistics 29, 1189–1232.

Ghoddousi, A. (2010). Habitat suitability modelling of the brown bear Ursus arctos in Croatia and Slovenia using telemetry data. M.Sc. Thesis, Imperial College, London.

Grafius, D. R., Corstanje, R., Siriwardena, G. M., Plummer, K. E., and Harris, J. A. (2017). A bird’s eye view: using circuit theory to study urban landscape connectivity for birds. Landscape Ecology 32, 1771–1787.
A bird’s eye view: using circuit theory to study urban landscape connectivity for birds.Crossref | GoogleScholarGoogle Scholar |

Gray, M., Wilmers, C. C., Reed, S. E., and Merenlender, A. M. (2016). Landscape feature-based permeability models relate to puma occurrence. Landscape and Urban Planning 147, 50–58.
Landscape feature-based permeability models relate to puma occurrence.Crossref | GoogleScholarGoogle Scholar |

Gutleb, B., and Ziaie, H. (1999). On the distribution and status of the brown bear Ursus arctos and the Asiatic black bear U. thibetanus in Iran. Zoology in the Middle East 18, 5–8.
On the distribution and status of the brown bear Ursus arctos and the Asiatic black bear U. thibetanus in Iran.Crossref | GoogleScholarGoogle Scholar |

Hanski, I., and Simberloff, D. (1997). The metapopulation approach, its history, conceptual domain, and application to conservation. In ‘Metapopulation Biology: Ecology, Genetics, and Evolution’. (Eds I. A. Hanski and M. E. Gilpin.) pp. 5–26. (Academic Press: San Diego, CA.)

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P., and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978.
Very high resolution interpolated climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |

Huber, D., and Roth, H. (1993). Movements of European brown bears in Croatia. Acta Theriologica 38, 151–159.
Movements of European brown bears in Croatia.Crossref | GoogleScholarGoogle Scholar |

IFRWMO (2014) Iranian forests, range and watershed management organization national land use/land cover map. Forest, Range and Watershed Management Organization of Iran, Tehran. Available at http://frw.org.ir/00/En/ [Verified 20 July 2014].

Kanellopoulos, N., Mertzanis, G., Korakis, G., and Panagiotopoulou, M. (2006). Selective habitat use by brown bear (Ursus arctos) in northern Pindos, Greece. Journal of Biological Research (Thessaloniki) 5, 23–33.

Kunkel, K. E., Atwood, T. C., Ruth, T. K., Pletscher, D. H., and Hornocker, M. G. (2013). Assessing wolves and cougars as conservation surrogates. Animal Conservation 16, 32–40.
Assessing wolves and cougars as conservation surrogates.Crossref | GoogleScholarGoogle Scholar |

Landis, J. R., and Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics 33, 159–174.
The measurement of observer agreement for categorical data.Crossref | GoogleScholarGoogle Scholar |

Majka, D., Jennes, J., and Beier, P. (2007). ‘Corridor Designer: ArcGIS Tools for Designing and Evaluation Corridors.’ Available at http://www.corridordesign.org/ [Verified 18 October 2007].

Martin, J., Revilla, E., Quenette, P. Y., Naves, J., Allaine, D., and Swenson, J. E. (2012). Brown bear habitat suitability in the Pyrenees: transferability across sites and linking scales to make the most of scarce data. Journal of Applied Ecology 49, 621–631.

Mateo-Sánchez, M. C., Balkenhol, N., Cushman, S., Pérez, T., Domínguez, A., and Saura, S. (2015). Estimating effective landscape distances and movement corridors: comparison of habitat and genetic data. Ecosphere 6, 59.
Estimating effective landscape distances and movement corridors: comparison of habitat and genetic data.Crossref | GoogleScholarGoogle Scholar |

McLellan, B. N., Proctor, M. F., Huber, D., and Michel, S. (2017). Ursus arctos (amended version of 2017 assessment). The IUCN Red List of Threatened Species 2017: e.T41688A121229971. http://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T41688A121229971.en [Accessed 26 April 2018].

McRae, B. H., Dickson, B. G., Keitt, T. H., and Shah, V. B. (2008). Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89, 2712–2724.
Using circuit theory to model connectivity in ecology, evolution, and conservation.Crossref | GoogleScholarGoogle Scholar |

Merow, C., Smith, M. J., Edwards, J. T. C., Guisan, A., Mcmahon, S. M., Normand, S., Thuiller, W., Wüest, R. O., Zimmermann, N. E., and Elith, J. (2014). What do we gain from simplicity versus complexity in species distribution models? Ecography 37, 1267–1281.
What do we gain from simplicity versus complexity in species distribution models?Crossref | GoogleScholarGoogle Scholar |

Mills, L. S., and Allendorf, F. W. (1996). The one-migrant-per generation rule in conservation and management. Conservation Biology 10, 1509–1518.
The one-migrant-per generation rule in conservation and management.Crossref | GoogleScholarGoogle Scholar |

Mueller, T., Olson, K. A., Fuller, T. K., Schaller, G. B., Murray, M. G., and Leimgruber, P. (2008). In search of forage: predicting dynamic habitats of Mongolian gazelles using satellite based estimates of vegetation productivity. Journal of Applied Ecology 45, 649–658.
In search of forage: predicting dynamic habitats of Mongolian gazelles using satellite based estimates of vegetation productivity.Crossref | GoogleScholarGoogle Scholar |

Naves, J., Fernandes-Gil, A., and Delibes, M. (2001). Effects of recreation activities on a brown bear family group in Spain. Ursus 12, 135–140.

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., Underwood, E. C., D’amico, J. A., Itoua, I., Strand, H. E., Morrison, J. C., Loucks, C. J., Allnutt, T. F., Ricketts, T. H., Kura, Y., Lamoreux, J. F., Wettengel, W. W., Hedao, P., and Kassem, K. R. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938.
Terrestrial ecoregions of the world: a new map of life on Earth.Crossref | GoogleScholarGoogle Scholar |

Pettorelli, N., Ryan, S., Mueller, T., Bunnefeld, N., Jędrzejewska, B., Lima, M., and Kausrud, K. (2011). The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology. Climate Research 46, 15–27.
The normalized difference vegetation index (NDVI): unforeseen successes in animal ecology.Crossref | GoogleScholarGoogle Scholar |

Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231–259.
Maximum entropy modeling of species geographic distributions.Crossref | GoogleScholarGoogle Scholar |

Piédallu, B., Quenette, P. Y., Bombillon, N., Gastineau, A., Miquel, C., and Gimenez, O. (2017). Determinants and patterns of the endangered brown bear Ursus arctos in the French Pyrenees revealed by occupancy modelling. Oryx , 1–10.

Pulliam, H. R. (1988). Sources, sinks and population regulation. American Naturalist 132, 652–661.
Sources, sinks and population regulation.Crossref | GoogleScholarGoogle Scholar |

Qing, J., Yang, Z., He, K., Zhang, Z., Gu, X., Yang, X., Zhang, W., Yang, B., Qi, D., and Dai, Q. (2016). The minimum area requirements (MAR) for giant panda: an empirical study. Scientific Reports 6, 37715.
The minimum area requirements (MAR) for giant panda: an empirical study.Crossref | GoogleScholarGoogle Scholar |

R Development Core Team (2014). ‘R: a Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna.) Available at http://www.R-project.org/ [Verified 7 October 2014].

Ridgeway, G. (1999). The state of boosting. Computing Science and Statistics 31, 172–181.

Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., and Woolmer, G. (2002). The human footprint and the last of the wild. Bioscience 52, 891–904.
The human footprint and the last of the wild.Crossref | GoogleScholarGoogle Scholar |

Sathyakumar, S., and Can, Ö. E. (2007). News and status of South Asian brown bears. International Bear News 16, 6–9.

Schurr, F. M., Pagel, J., Cabral, J. S., Groeneveld, J., Bykova, O., Hartig, F., Kissling, W. D., Linder, H. P., Midgley, G. F., Schröder, B., Singer, A., and Zimmermann, N. E. (2012). How to understand species’ niches and range dynamics: a demographic research agenda for biogeography. Journal of Biogeography 39, 2146–2162.
How to understand species’ niches and range dynamics: a demographic research agenda for biogeography.Crossref | GoogleScholarGoogle Scholar |

Scott, R. E. (2005). Modelling windthrow risk in coastal variable retention using tree, neighbourhood, and stand attributes. M.Sc. Thesis, the University of British Columbia, Vancouver, BC, Canada.

Sergio, F., Caro, T., Brown, D., Clucas, B., Hunter, J., Ketchum, J., Mchugh, K., and Hiraldo, F. (2008). Top predators as conservation tools: ecological rationale, assumptions, and efficacy. Annual Review of Ecology Evolution and Systematics 39, 1–19.
Top predators as conservation tools: ecological rationale, assumptions, and efficacy.Crossref | GoogleScholarGoogle Scholar |

Støen, O. G., Ordiz, A., Evans, A. L., Laske, T. G., Kindberg, J., Fröbert, O., Swenson, J. E., and Arnemo, J. M. (2015). Physiological evidence for a human-induced landscape of fear in brown bears (Ursus arctos). Physiology & Behavior 152, 244–248.
Physiological evidence for a human-induced landscape of fear in brown bears (Ursus arctos).Crossref | GoogleScholarGoogle Scholar |

Thuiller, W. (2003). BIOMOD: optimizing predictions of species distributions and projecting potential future shifts under global change. Global Change Biology 9, 1353–1362.
BIOMOD: optimizing predictions of species distributions and projecting potential future shifts under global change.Crossref | GoogleScholarGoogle Scholar |

Thuiller, W., Lafourcade, B., Engler, R., and Araujo, M. B. (2009). BIOMOD: a platform for ensemble forecasting of species distributions. Ecography 32, 369–373.
BIOMOD: a platform for ensemble forecasting of species distributions.Crossref | GoogleScholarGoogle Scholar |

Vucetich, J. A., and Waite, T. A. (2000). Is one migrant per generation sufficient for the genetic management of fluctuating populations? Animal Conservation 3, 261–266.
Is one migrant per generation sufficient for the genetic management of fluctuating populations?Crossref | GoogleScholarGoogle Scholar |

Whiteman, A., Passoni, G., Rowcliffe, J. M., Ugarković, D., Kusak, J., Reljić, S., and Huber, D. (2017). dentifying key denning habitat to conserve brown bear (Ursus arctos) in Croatia. Wildlife Research 44, 309–315.
dentifying key denning habitat to conserve brown bear (Ursus arctos) in Croatia.Crossref | GoogleScholarGoogle Scholar |

Wiegand, T., Naves, J., Garbulsky, M. F., and Fernandez, N. (2008). Animal habitat quality and ecosystem functioning: exploring seasonal patterns using NDVI. Ecological Monographs 78, 87–103.
Animal habitat quality and ecosystem functioning: exploring seasonal patterns using NDVI.Crossref | GoogleScholarGoogle Scholar |

Zarghami, M., Abdi, A., Babaeian, I., Hassanzadeh, Y., and Kanani, R. (2011). Impacts of climate change on runoffs in East Azerbaijan, Iran. Global and Planetary Change 78, 137–146.
Impacts of climate change on runoffs in East Azerbaijan, Iran.Crossref | GoogleScholarGoogle Scholar |

Ziółkowska, E., Ostapowicz, K., Radeloff, V. C., Kuemmerle, T., Sergiel, A., Zwijacz-Kozica, T., Zięba, F., Śmietana, W., and Selva, N. (2016). Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians. Landscape Ecology 31, 1863–1882.
Assessing differences in connectivity based on habitat versus movement models for brown bears in the Carpathians.Crossref | GoogleScholarGoogle Scholar |